首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 467 毫秒
1.
Capsicum are among the most extensively cultivated and consumed plant species in the world, because of their unique pungency, aroma and colour. The typical burning sensation caused by chili peppers is due to the occurrence of a group of alkaloids named capsaicinoids. In the present study, the production of solid callus and cell suspensions from hypocotyl explants of three different chili pepper cultivars (Capsicum annuum L. cv. Mazzolino, Capsicum chinense Jacq. cv. Naga Morich and Pimenta de Neyde), was optimised. In addition, C. chinense cv. Naga Morich cell suspensions were supplemented with biotic elicitors (methyl-jasmonate and chitosan) and with precursors and intermediates of capsaicin biosynthesis (vanillin, phenylalanine and valine), and both cells and media were analysed for capsaicinoid, polyphenol, flavonoid contents and for antioxidant activity. This is the first report regarding capsaicinoid elicitation with pure chitosan and with a combination of precursors of both phenylpropanoid and valine pathways. Overall, the highest capsaicinoid levels were detected in cell extracts from cultures treated with 10 μM methyl-jasmonate and with a combination of phenylalanine and valine amino acids (100 μM each). The present results confirm the possibility of using hypocotyl chili pepper cell suspensions to produce high amounts of health beneficial metabolites.  相似文献   

2.
The work was conducted with the purpose to evaluate antioxidant activity of Parmelia saxatilis (PS) by different analytical methods. Water and methanol were used as solvents and antioxidative effects were measured by a ferric thiocyanate method (FTC) and thiobarbituric acid test (TBA). The antioxidant activity increased with the increasing amount of extracts (from 50 to 250 μg) added to linoleic acid emulsion. The methanol extract of PS exhibited high antioxidative activity that was not significantly (P < 0.05) different from α-tocopherol, while aqueous extracts of PS showed low antioxidative activity. Similar trends of antioxidant activity were observed using either the FTC or TBA methods. Antioxidant activity, reducing power, free radical scavenging (DPPH·), superoxide anion radical scavenging, metal chelating and hydrogen peroxide scavenging activities of PS extracts showed dose dependence and increased with concentration of PS extract. The results obtained in the present study indicate that the PS might be a potential source of natural antioxidant.  相似文献   

3.
Background and Aims Pepper (Capsicum annuum) contains high levels of antioxidants, such as vitamins A and C and flavonoids. However, information on the role of these beneficial compounds in the physiology of pepper fruit remains scarce. Recent studies have shown that antioxidants in ripe pepper fruit play a key role in responses to temperature changes, and the redox state at the time of harvest affects the nutritional value for human consumption. In this paper, the role of antioxidant metabolism of pepper fruit during ripening and in the response to low temperature is addressed, paying particular attention to ascorbate, NADPH and the superoxide dismutase enzymatic system. The participation of chloroplasts, mitochondria and peroxisomes in the ripening process is also investigated.Scope and Results Important changes occur at a subcellular level during ripening of pepper fruit. Chloroplasts turn into chromoplasts, with drastic conversion of their metabolism, and the role of the ascorbate–glutathione cycle is essential. In mitochondria from red fruits, higher ascorbate peroxidase (APX) and Mn-SOD activities are involved in avoiding the accumulation of reactive oxygen species in these organelles during ripening. Peroxisomes, whose antioxidant capacity at fruit ripening is substantially affected, display an atypical metabolic pattern during this physiological stage. In spite of these differences observed in the antioxidative metabolism of mitochondria and peroxisomes, proteomic analysis of these organelles, carried out by 2-D electrophoresis and MALDI-TOF/TOF and provided here for the first time, reveals no changes between the antioxidant metabolism from immature (green) and ripe (red) fruits.Conclusions Taken together, the results show that investigation of molecular and enzymatic antioxidants from cell compartments, especially chloroplasts, mitochondria and peroxisomes, is a useful tool to study the physiology of pepper fruit, particularly in the context of expanding their shelf-life after harvest and in maintaining their nutritional value.  相似文献   

4.

Background  

There is no dedicated database available for Expressed Sequence Tags (EST) of the chili pepper (Capsicum annuum), although the interest in a chili pepper EST database is increasing internationally due to the nutritional, economic, and pharmaceutical value of the plant. Recent advances in high-throughput sequencing of the ESTs of chili pepper cv. Bukang have produced hundreds of thousands of complementary DNA (cDNA) sequences. Therefore, a chili pepper EST database was designed and constructed to enable comprehensive analysis of chili pepper gene expression in response to biotic and abiotic stresses.  相似文献   

5.
Butylated hydroxytoluene (BHT) is one of the synthetic antioxidant agents commonly used for food additives. In the present study, we determined that four freshwater phytoplankton, including a green alga (Botryococcus braunii Kütz.) and three cyanobacteria [Cylindrospermopsis raciborskii (Wol?osz.) Seenaya et Sabba Raju, Microcystis aeruginosa (Kütz.) and Oscillatoria sp.] were capable of producing this compound. Hexane extracts from all the studied species exhibited various degrees of antioxidative properties when they were tested with the β‐carotene‐linoleate (β‐CL) assay and the 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) free‐radical‐scavenging assay. The highest antioxidant activity was observed in the crude extracts of M. aeruginosa and B. braunii, which displayed a similar activity to synthetic BHT. Gas chromatography/mass spectroscopy (GC‐MS) analysis of the purified fractions revealed that the active compound was identical to synthetic BHT. Culturing under various irradiances gave rise to different magnitudes of BHT production in cyanobacterial cells, showing that more BHT was produced in the cells irradiated with a higher light intensity, and its production was irradiance dependent. Moreover, the quantity of cellular BHT displayed a positive correlation with the antioxidative activity of the tested species. The present study confirms the production of BHT in all four of the studied freshwater phytoplankton and suggests that these species constitute a potential source for producing natural BHT.  相似文献   

6.
The green unicellular alga, Haematococcus pluvialis has two antioxidative mechanisms against environmental oxidative stress: antioxidative enzymes in vegetative cells and the antioxidative ketocarotenoid, astaxanthin, in cyst cells. We added a reagent that generates superoxide anion radicals (O2 ), methyl viologen, to mature and immature cysts of H. pluvialis. Tolerance to methyl viologen was higher in mature than in immature cysts. Mature (astaxanthin-rich) cysts showed high antioxidant activity against O2 in permeabilized cells, but not in astaxanthin-free cell extracts, while immature (astaxanthin-poor) cysts had very low antioxidant activities against O2 in both. The results suggested that astaxanthin accumulated in the cyst cells functions as an antioxidant against excessive oxidative stress. The same levels of antioxidant activities against O2 in both permeabilized cells and cell extracts from vegetative cells suggested the presence of antioxidative enzymes (superoxide dismutase). Received: 13 January 1997 / Received revision: 26 February 1997 / Accepted: 27 March 1997  相似文献   

7.
Shen Q  Shang N  Li P 《Current microbiology》2011,62(4):1097-1103
Several studies reported the antioxidant activity of bifidobacteria using assays in vitro. In present study, the in vitro and in vivo antioxidant activity of Bifidobacterium animalis 01 was investigated. Culture supernatant, intact cells, and intracellular cell-free extracts of B. animalis 01 were involved in this study. The antioxidant assays in vitro included lipid peroxidation assay, 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, hydroxyl radical ( OH) assay and superoxide anion ( \textO2 - {\text{O}}_{2}^{ - } ) assay. The antioxidant assays in vivo were conducted using mice model. Activities of antioxidative enzymes, malondialdehyde (MDA) content in serums and livers of aging mice were evaluated. Monoamine oxidase (MAO) activity and lipofuscin level in brains of aging mice were also characterized. Results showed that culture supernatant, intact cells and intracellular cell-free extracts of B. animalis 01 could effectively scavenge free radicals, significantly enhance mice’s activities of antioxidative enzymes and reduce mice’s MDA content, lipofuscin level and MAO activity. Our results indicated that B. animalis 01 has the potential to be developed into a dietary antioxidant supplements.  相似文献   

8.
Chung E  Park JM  Oh SK  Joung YH  Lee S  Choi D 《Planta》2004,220(2):286-295
The isolated full-length Capsicum annuum calcium-dependent protein kinase 3 (CaCDPK3) cDNA clone was selected from the chili pepper expressed sequence tag database (). Phylogenetic analysis based on the deduced amino acid sequence of CaCDPK3 cDNA revealed significant sequence similarity to the winter squash (Cucurbita maxima) CmCPK2 gene (81% identity). Genomic gel blot analysis disclosed that CaCDPK3 belongs to a multigene family in the pepper genome. CaCDPK3 expression was root tissue-specific, as shown by Northern blot data. The gene was rapidly induced in response to various osmotic stress factors and exogenous abscisic acid application in pepper leaves. Moreover, CaCDPK3 RNA expression was induced by an incompatible pathogen and by plant defense-related chemicals such as ethephon, salicylic acid and jasmonic acid. The biochemical properties of CaCDPK3 were investigated using a CaCDPK3 and glutathione S-transferase (GST) fusion protein. The recombinant proteins retained calcium-binding ability, and displayed autophosphorylation activity in vitro in a calcium-dependent manner. Further transient-expression studies showed that CaCDPK3 fused with soluble modified green fluorescent protein (smGFP) localized to the cytosol in chili pepper protoplasts. We propose that CaCDPK3 is implicated in biotic and abiotic stresses in pepper plants.  相似文献   

9.
The aim of the present study was to examine the antioxidant activity of three Veronica species (Plantaginaceae). The antioxidant potential of various extracts obtained from aerial flowering parts was evaluated by DPPH-free (1,1-diphenyl-2-picrylhydrazyl-free) radical scavenging activity and ferric-reducing antioxidant power assays. Considerable antioxidant activity was observed in the plant samples (FRAP values ranged from 0.97 to 4.85 mmol Fe2+/g, and DPPH IC50 values from 12.58 to 66.34 μg/ml); however, these levels were lower than the activity of the control compound butylated hydroxytoluene (BHT) (FRAP: 10.58 mmol Fe2+/g; DPPH IC50: 9.57 μg/ml). Also, the in vivo antioxidant effects were evaluated in several hepatic antioxidant systems in rats (activities of glutathione peroxidase, glutathione reductase, peroxidase, catalase, xanthine oxidase, glutathione content and level of thiobarbituric acid reactive substances) after treatment with different Veronica extracts, or in combination with carbon tetrachloride (CCl4). Pretreatment with 100 mg/kg b.w. of Veronica extracts inhibited CCl4-induced liver injury by decreasing TBA-RS level, increasing GSH content, and bringing the activities of CAT and Px to control levels. The present study suggests that the extracts analyzed could protect the liver cells from CCl4-induced liver damage by their antioxidative effect on hepatocytes.  相似文献   

10.
Zhong  Ting-Ying  Yao  Gai-Fang  Wang  Sha-Sha  Li  Ting-Ting  Sun  Ke-Ke  Tang  Jun  Huang  Zhong-Qin  Yang  Feng  Li  Yan-Hong  Chen  Xiao-Yan  Hu  Lan-Ying  Zhang  Hua  Hu  Kang-Di 《Journal of Plant Growth Regulation》2021,40(6):2548-2559

As a signaling molecule, hydrogen sulfide (H2S) plays an indispensable role in the modulation of ripening and senescence in fruits and vegetables. To explore the role of H2S in regulating metabolism of postharvest tomato, ripening-related physiological parameters, activities of antioxidant enzymes and gene expression were analyzed in H2S-fumigated tomato fruits. These results show that H2S significantly delayed the color transition and softening of tomato fruit, and maintained higher level of flavonoids and lower level of anthocyanin during storage. Besides, H2S could maintain higher level of nutritional-related metabolites, such as reducing sugar, ascorbic acid during postharvest storage. Moreover, H2S decreased the rate of O2 production, inhibited the production of H2O2 and malondialdehyde (MDA), enhanced the activities of antioxidant enzymes including ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (POD) in tomato fruits, while reduced the activities of phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO) and lipoxygenase (LOX). Besides, the expression of the antioxidant-encoding genes SlCAT2, SlPOD12 was generally upregulated with H2S fumigation. Principal component analysis (PCA) suggests that H2S induced significant discrepancy mainly to the differences in firmness, anthocyanin, flavonoid and the activity of guaiacol peroxidase (POD), and the correlation analysis further shows that H2S affected pigment metabolism and nutritional quality. In conclusion, H2S could maintain better appearance and nutritional quality, and prolong the storage period of postharvest tomato fruits through activating the antioxidative system.

  相似文献   

11.
The fungal pathogen, Alternaria alternata is responsible for causing leaf spot disease in many plants, including chili pepper. Zinc (Zn) an essential micronutrient for plant growth, also increases resistance in plants against diseases, and also acts as an antifungal agent. Here, in vitro effects of ZnSO4 on the propagation of A. alternata were investigated, and also in vivo, the effect of foliar application of ZnSO4 was investigated in chili pepper plants under disease stress. In vitro, ZnSO4 inhibited fungal growth in a dose-dependent manner, with complete inhibition being observed at the concentration of 8.50 mM. Hyphae and conidial damage were observed along with abnormal activity of antioxidant enzymes, Fourier-transform infrared spectroscopy confirmed the major changes in the protein structure of the fungal biomass after Zn accumulation. In vivo, pathogen infection caused the highest leaf spot disease incidence, and cumulative disease index, which resulted in a significant reduction in the plant’s growth (length and biomass), and physiochemical traits (photosynthetic pigment, activity of catalase, peroxidase, polyphenol oxidase, and phenylalanine ammonia lyase). The heat map and principal component analysis based on disease, growth and, physico-chemical variables generated useful information regarding the best treatment useful for disease management. Foliar Zn (0.036 mM) acted as a resistance inducer in chili pepper plants that improved activities of antioxidants (CAT and POX), and defense compounds (PPO and PAL), while managing 77% of disease. The study indicated foliar ZnSO4 as an effective and sustainable agriculture practice to manage Alternaria leaf spot disease in chili pepper plants.  相似文献   

12.
13.
The objective of this study was to screen Streptomyces spp. for biological control of root and stem rot (Sclerotium rolfsii) and bacterial wilt (Ralstonia solanacearum), the very destructive diseases of chili pepper in Thailand. About 265 isolates of Streptomyces spp. were tested for their inhibitory effects on S. rolfsii mycelial growth on dual culture plates. Then, 14 promising isolates were further tested for their effects on R. solanacearum growth. Three effective isolates further identified as S. mycarofaciens SS-2-243, S.philanthi RL-1-178 and S. philanthi RM-1-138 were selected and proved to produce both antifungal and antibacterial substances in the culture medium. S. philanthi RM-1-138 strongly inhibited seed germination and seedling growth of chili pepper in laboratory tests. Therefore, it was not used in the following studies. When tested in greenhouse conditions, the efficacy of S. philanthi RL-1-178 in suppressing Sclerotium root and stem rot of chili pepper was approximately equal to that of Trichoderma harzianum NR-1-52 or that of carboxin treatment. S. mycarofaciens SS-2-243 and S. philanthi RL-1-178 suppressed Ralstonia wilt of chili pepper in a way that was similar to streptomycin sulfate treatment and it was observed that T. harzianum NR-1-52 had no effect on the bacterial wilt. Under field conditions where the soil was inoculated with two pathogens, the results showed that S. philanthi RL-1-178 could protect the chili pepper plants from S. rolfsii and R. solanacearum infection better than S. mycarofaciens SS-2-243 or T. harzianum NR-1-52. S. philanthi RL-1-178 treatment resulted in 58.75% survival of chili pepper plants and its efficacy was not significantly different from the carboxin-and-streptomycin sulfate treatment.  相似文献   

14.
Summary Chili pepper is an important horticultural crop that can surely benefit from plant biotechnology. However, although it is a Solanaceous member, developments in plant cell, tissue, and organ culture, as well as on plant genetic transformation, have lagged far behind those achieved for other members of the same family, such as tobacco (Nicotiana tabacum), tomato (Lycopersicon esculentum), and potato (Solanum tuberosum), species frequently used as model systems because of their facility to regenerate organs and eventually whole plants in vitro, and also for their ability to be genetically engineered by the currently available transformation methods. Capsicum members have been shown to be recalcitrant to differentiation and plant regeneration under in vitro conditions, which in turn makes it very difficult or inefficient to apply recombinant DNA technologies via genetic transformation aimed at genetic improvement against pests and diseases. Some approaches, however, have made possible the regeneration of chili pepper plants from in vitro-cultured cells, tissues, and organs through organogenesis or embryogenesis. Anther culture has been successfully applied to obtain haploid and doubledhaploid plants. Organogenic systems have been used for in vitro micropropagation as well as for genetic transformation. Application of both tissue culture and genetic transformation techniques have led to the development of chili pepper plants more resistant to at least one type of virus. Cell and tissue cultures have been applied successfully to the selection of variant cells exhibiting increased resistance to abiotic stresses, but no plants exhibiting the selected traits have been regenerated. Production of capsaicinoids, the hot principle of chili pepper fruits, by cells and callus tissues has been another area of intense research. The advances, limitations, and applications of chili pepper biotechnology are discussed.  相似文献   

15.
The biosynthesis of the sesquiterpenic phytoalexin capsidiol was investigated using in vitro root cultures of chili pepper (Capsicum annuum) elicited with cellulase. Optimal concentrations of cellulase and sucrose for capsidiol production were established. A simple spectrophotometric procedure to quantify capsidiol was improved. Monoclonal antibodies against a tobacco sesquiterpene cyclase were used to detect a similar protein in pepper root extracts. We found that capsidiol was secreted to the medium and the maximal production was achieved at 24 h after elicitation. In contrast, the maximal amount of the elicitor inducible sesquiterpene cyclase was found between 6 and 8 h. Addition of small amounts of polyvinylpyrrolidone was necessary for sesquiterpene cyclase enzyme activity assays.Abbreviations AP alkaline phosphatase - BCIP 5-bromo-4-chloro-3-indolylphosphate - DMF dimethyl-formamide - FPP farnesyl pyrophosphate - MAb monoclonal antibodies - NBT nitro blue tetrazolium - PVP polyvinylpyrrolidone - SC sesquiterpene cyclase  相似文献   

16.
Laserpitium carduchorum is frequently used as a spice, and in Bane folk medicine, the aerial parts of this are used to treat urinary infections. Variation in the quantity and quality of the essential oil of Iranian L. carduchorum at different developmental growth stages including vegetative, flowering, and seed ripening is reported. In total, 33 compounds were identified and quantified in the oils of vegetative, flowering, and seed ripening stages, representing 97.8%, 98.8%, and 98.7% of the oils, respectively. α‐Pinene (45.1, 61.4, and 46.4%), sabinene (16.5, 10.3, and 17.5%), and limonene (6.4, 8.5, and 20.4%) were the main compounds in all samples. The antioxidant activities of different extracts of L. carduchorum at different developmental growth stages were examined by employing various established in vitro experiments including DPPH, FRAP, and TEAC assays. The amounts of total phenolics were also determined spectrophotometerically. Antimicrobial activities of different extracts and essential oils of L. carduchorum at different developmental growth stages were examined against five Gram‐positive and four Gram‐negative bacteria, as well as two fungi. The results showed that maximum antioxidant and antimicrobial activity of extracts were at the flowering stage of the plant. Maximum antimicrobial activity of essential oils was at seed ripening stage.  相似文献   

17.
Electron paramagnetic resonance (EPR) spin-trapping and spin-probing techniques were applied to determine antioxidant activity of extracts of catkin, leaves, and spiny burs of Castanea sativa against physiologically relevant reactive species—superoxide and hydroxyl radical generated in simple chemical systems and hydrogen peroxide applied on erythrocytes. Efflux of K+ was used as a marker of membrane integrity. Chemical composition of extracts was analyzed using HPLC/DAD and LC/MS. Extracts showed high antioxidative capacity against superoxide but lower activity against hydroxyl radical. They protected fluidity and integrity of membranes of erythrocytes exposed to hydrogen peroxide. Levels of derivatives of ellagitannins showed positive correlation with the antioxidative activity of extracts. Therefore, ellagitannins from chestnut extracts could represent easily accessible natural antioxidants and beneficial component of human diet in pathophysiological conditions related to oxidative stress. In conclusion, EPR spectroscopy represents a valuable tool for evaluation of antioxidant activity in both hydrophilic and lipophilic media. This work was supported by the Federal Ministry of Education and Science of Bosnia and Herzegovina Grant No. 614300 and the Ministry of Science, Technology, and Development of Republic of Serbia Grant No. 143016. We would like to thank Ms. Ana Martinović on technical support.  相似文献   

18.
The objective of this study is to compare the efficacy of ethanol extracts from different parts of Sophora viciifolia. The content of polyphenols, flavonoids, alkaloids, and antioxidant capacity, antimicrobial activity were investigated, and individual polyphenols and alkaloids were analyzed and quantified by ultra‐high performance liquid chromatography (UPLC). The microdilution method was used to determine the antimicrobial activity of extracts from S. viciifolia on six strains. The results for extracts from the different parts (flowers, leaves, and fruit) were compared in varying concentrations to determine whether one extract source is superior to another. Testing verified that extracts from the different parts of S. viciifolia did vary, as expected. For example, extract from the leaves had the best antimicrobial activity against pathogenic Candida albicans, but all extracts had good antimicrobial activity against the six tested strains. These results reveal that the active substances in S. viciifolia are abundant and have good antioxidant and antimicrobial activities, which can provide theoretical support for the subsequent development and utilization of S. viciifolia extracts.  相似文献   

19.
The chemical composition and antioxidant activity of essential oils and MeOH extracts of stems, needles, and berries from Juniperus rigida were studied. The results indicated that the yield of essential oil from stems (2.5%) was higher than from needles (0.8%) and berries (1.0%). The gas chromatography/mass spectrometer (GC/MS) analysis indicated that 21, 17, and 14 compounds were identified from stems, needles, and berries essential oils, respectively. Caryophyllene, α‐caryophyllene, and caryophyllene oxide were primary compounds in both stems and needles essential oils. However, α‐pinene and β‐myrcene mainly existed in berries essential oils and α‐ionone only in needles essential oils. The high‐performance liquid chromatography (HPLC) analysis indicated that the phenolic profiles of three parts exhibited significant differences. Needles extracts had the highest content of chlorogenic acid, catechin, podophyllotoxin, and amentoflavone, and for berries extracts, the content of those compounds was the lowest. Meanwhile, three in vitro methods (DPPH, ABTS, and FRAP) were used to evaluate antioxidant activity. Stems essential oil and needles extracts exhibited the powerful antioxidant activity than other parts. This is the first comprehensive study on the different parts of J. rigida. The results suggested that stems and needles of J. rigida are useful supplements for healthy products as new resources.  相似文献   

20.
Dihydrocapsaicin, one of pungent principles in Capsicum fruits, was formed and accumulated in sweet pepper fruits after 6 days’ post-harvest ripening under continuous light in a medium containing vanillylamine and isocapric acid. No capsaicinoids were formed in sweet pepper fruits ripened in the dark even in the presence of both vanillylamine and isocapric acid. The capsaicinoid newly formed during the ripening was almost exclusively dihydrocapsaicin, as much as 92.8% of the total capsaicinoids. Dihydrocapsaicin was also formed by cell-free extracts prepared from the sweet pepper fruits in a reaction mixture containing vanillylamine and isocapric acid. Dihydrocapsaicin formed was quantified by TLC, GLC, GC-MS and MF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号