首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a highly active foliar aminopeptidase preferentially releasing N-terminal alanine from artificial substrates was purified and characterized from cucumber (Cucumis sativus L. suyo). The enzyme had a molecular mass of 200 kDa consisting of two subunits of 95 kDa. It was a metalloprotease the pH optimum of which was 8 to 9. It cleaved Ala-, Gly-, Met-, Ser-, Leu-, Lys-, and Arg artificial substrates. An internal amino acid sequence was similar to those of aminopeptidase N (clan MA, family M1) of microorganisms, and was very similar to that of a putative aminopeptidase N of Arabidopsis thaliana. From these results, the highly active aminopeptidase in cucumber leaves was identified to be a plant aminopepitdase N.  相似文献   

2.
A 96 kDa aminopeptidase was purified from Streptococcus salivarius subsp. thermophilus NCDO 573. The enzyme had similar properties to aminopeptidases isolated from lactococci and lactobacilli and showed a high degree of N -terminal amino acid sequence homology to aminopeptidase N from Lactococcus lactis subsp. cremoris. It catalysed the hydrolysis of a range of aminoacyl 4-nitroanilides and 7-amido-4-methylcoumarin derivatives, dipeptides, tripeptides and oligopeptides. In common with aminopeptidases from other lactic acid bacteria, the enzyme from Strep. salivarius subsp. thermophilus showed highest activity with lysyl derivatives but was also very active with arginyl and leucyl derivatives. Relative activity with alanyl, phenylalanyl, tyrosyl, seryl and valyl derivatives was considerably lower and with glycyl, glutamyl and prolyl derivatives almost negligible. The aminopeptidase also catalysed the hydrolysis of dipeptides and tripeptides but mostly at rates much less than that with L-lysyl-4-nitroanilide and oligopeptides. The enzyme catalysed the successive hydrolysis of various amino acid residues from the N -terminus of several oligopeptides but it was unable to cleave peptide bonds on the N -terminal side of a proline residue.  相似文献   

3.
A Novel Aminopeptidase with Highest Preference for Lysine   总被引:1,自引:0,他引:1  
Neuropeptides are formed from sedentary precursors to smaller, active peptides by processing enzymes cleaving at paired basic residues. The process generates peptide intermediates with additional Lys or Arg residues at their NH(2) and COOH termini; the N-terminal basic amino acids are later removed by specific aminopeptidases. We report here a novel lysine-specific aminopeptidase (KAP) of ubiquitous distribution. The enzyme was resolved from puromycin-sensitive aminopeptidase (PSA), aminopeptidase B (APB), and neuron-specific aminopeptidase (NAP). It was purified by FPLC after (NH(4))(2)SO(4) precipitation. The purified KAP had a K(m) of 333 microM with a V(max) of 0.7 nmol Lys ssNA/min/mg protein. N-terminal basic amino acids, Lys in particular, were its favorable substrates. KAP was inhibited by chelating agents and by serine protease inhibitors. It was highly sensitive to aminopeptidase inhibitor bestatin, but insensitive to puromycin and amastatin, showing that KAP is distinct from PSA, NAP, and aminopeptidase A (APA). The 62,000-Da enzyme had a pH optimum at 7.5 and NaCl was its strongest activator. However, metals could not restore KAP's activity after it was dialyzed against EGTA. Our data indicated that rat KAP did not resemble any aminopeptidases as well as the microbial lysine aminopeptidases.  相似文献   

4.
Aminopeptidases process the N-terminal amino acids of target substrates by sequential cleavage of one residue at a time. They are found in all cell compartments of prokaryotes and eukaryotes, being implicated in the major proteolytic events of cell survival, defense, growth, and development. We present a new approach for the fast and reliable evaluation of the substrate specificity of individual aminopeptidases. Using solid phase chemistry with the 7-amino-4-carbamoylmethylcoumarin fluorophore, we have synthesized a library of 61 individual natural and unnatural amino acids substrates, chosen to cover a broad spectrum of the possible interactions in the S1 pocket of this type of protease. As proof of concept, we determined the substrate specificity of human, pig, and rat orthologs of aminopeptidase N (CD13), a highly conserved cell surface protease that inactivates enkephalins and other bioactive peptides. Our data reveal a large and hydrophobic character for the S1 pocket of aminopeptidase N that is conserved with aminopeptidase Ns. Our approach, which can be applied in principle to all aminopeptidases, yields useful information for the design of specific inhibitors, and more importantly, reveals a relationship between the kinetics of substrate hydrolysis and the kinetics of enzyme inhibition.  相似文献   

5.
Abstract: Eight protease inhibitors of microbiological origin were examined as potential inhibitors of a homogeneous rat brain enkephalin aminopeptidase. Bestatin [(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl]- l -leucine and analogs of bestatin having basic, acidic, and other neutral amino acids substituted for the Leu residue exhibited inhibition constants ranging from 3.3 ± 10−5 to 8.3 ± 10−8 m . The best inhibitor had a positively charged amino acid (Lys) substituted for Leu. A series of phenylalanyl dipeptides were examined as substrates with the aminopeptidase. The amino acid residue on the carboxyl side of the peptide bond undergoing cleavage was varied systematically in the dipeptides to include neutral, acidic, and basic residues. Again, a positively charged amino acid (Arg) adjacent to the bond undergoing scission was kinetically preferred. These results may be used to design highly specific inhibitors of the enkephalin aminopeptidase.  相似文献   

6.
A prolyl aminopeptidase (PAP) (EC 3.4.11.5) was isolated from the cell extract of Debaryomyces hansenii CECT12487. The enzyme was purified by selective fractionation with protamine and ammonium sulfate, followed by two chromatography steps, which included gel filtration and anion-exchange chromatography. The PAP was purified 248-fold, with a recovery yield of 1.4%. The enzyme was active in a broad pH range (from 5 to 9.5), with pH and temperature optima at 7.5 and 45°C. The molecular mass was estimated to be around 370 kDa. The presence of inhibitors of serine and aspartic proteases, bestatin, puromycin, reducing agents, chelating agents, and different cations did not have any effect on the enzyme activity. Only iodoacetate, p-chloromercuribenzoic acid, and Hg2+, which are inhibitors of cysteine proteases, markedly reduced the enzyme activity. The Km for proline-7-amido-4-methylcoumarin was 40 μM. The enzyme exclusively hydrolyzed N-terminal-proline-containing substrates. This is the first report on the identification and purification of this type of aminopeptidase in yeast, which may contribute to the scarce knowledge about D. hansenii proteases and their possible roles in meat fermentation.  相似文献   

7.
A protamine-degrading marine bacterium was isolated from marine soil and identified as Aevomonas salmonicida subsp. based on its taxonomical characteristics. An alanine-specific aminopeptidase, called aminopeptidase K, from an extract of the strain was purified and characterized. The aminopeptidase K was purified about 80-fold by fractionation with ammonium sulfate and column chromatography on QA-52 cellulose, Phenyl Superose and Superose 12. The purified enzyme is composed of 6 subunits of 86 kDa with a molecular mass of 520 kDa according to gel filtration and SDS–PAGE. The N-terminal sequence of the enzyme was H · Gly-Gln-GIn-Pro-Gln-Ile-Lys-Try-Tyr-His-Asp-Tyr-Asp-Ala-Pro-Asp-Tyr-Tyr-Ile-Thr-. It is inhibited by monoiodoacetate, N-ethylmaleimide, and puromycin. The Michaelis constant (Km) and the maximal rate of hydrolysis (Vmax) were, respectively, 0.28 mm and 49.4 μmol/min/mg for the l-Ala-β-naphthylamide substrate. The optimum pH and optimum temperature were 6.5 and 45°C, respectively. The purified enzyme was highly specific to l-Ala-β-naphthylamide.  相似文献   

8.
An arginine aminopeptidase (EC 3.4.11.6) that exclusively hydrolyzes basic amino acids from the amino (N) termini of peptide substrates has been purified from Lactobacillus sakei. The purification procedure consisted of ammonium sulfate fractionation and three chromatographic steps, which included hydrophobic interaction, gel filtration, and anion-exchange chromatography. This procedure resulted in a recovery rate of 4.2% and a 500-fold increase in specific activity. The aminopeptidase appeared to be a trimeric enzyme with a molecular mass of 180 kDa. The activity was optimal at pH 5.0 and 37°C. The enzyme was inhibited by sulfhydryl group reagents and several divalent cations (Cu2+, Hg2+, and Zn2+) but was activated by reducing agents, metal-chelating agents, and sodium chloride. The enzyme showed a preference for arginine at the N termini of aminoacyl derivatives and peptides. The Km values for Arg-7-amido-4-methylcoumarin (AMC) and Lys-AMC were 15.9 and 26.0 μM, respectively. The nature of the amino acid residue at the C terminus of dipeptides has an effect on hydrolysis rates. The activity was maximal toward dipeptides with Arg, Lys, or Ala as the C-terminal residue. The properties of the purified enzyme, its potential function in the release of arginine, and its further metabolism are discussed because, as a whole, it could constitute a survival mechanism for L. sakei in the meat environment.  相似文献   

9.
Aminopeptidase Profiles of Various Bacteria   总被引:7,自引:2,他引:5       下载免费PDF全文
The aminopeptidase specificity of 24 strains of bacteria was determined fluorometrically by use of a series of alpha-amino acid beta-naphthylamides as substrates. Provided that strict control over medium and growth time was adhered to, a reproducible profile of aminopeptidase activity was obtained which could be used for the identification of bacteria.  相似文献   

10.
A novel enzyme with a specific phenylalanine aminopeptidase activity (ApsC) from Aspergillus niger (CBS 120.49) has been characterized. The derived amino acid sequence is not similar to any previously characterized aminopeptidase sequence but does share similarity with some mammalian acyl-peptide hydrolase sequences. ApsC was found to be most active towards phenylalanine β-naphthylamide (F-βNA) and phenylalanine para-nitroanilide (F-pNA), but it also displayed activity towards other amino acids with aromatic side chains coupled to βNA; other amino acids with nonaromatic side chains coupled to either pNA or βNA were not hydrolyzed or were poorly hydrolyzed. ApsC was not able to hydrolyze N-acetylalanine-pNA, a substrate for acyl-peptide hydrolases.  相似文献   

11.
为研究猪氨基肽酶(Porcine Aminopeptidase N,pAPN)是否作为猪流行性腹泻病毒(Porcine epidemic diarrhea virus,PEDV)的细胞感染受体,通过转染技术,使PEDV非容许性细胞MDCK表达pAPN,并用PEDV感染转染细胞。结果发现转染的MDCK细胞可以感染PEDV,并且该病毒可以在转染细胞中连续传代。免疫荧光法鉴定存在病毒抗原。进一步实验证实,抗pAPN血清可以抑制PEDV感染转染的MDCK细胞。这些结果展示转染的MDCK细胞、pAPN表达及PEDV病毒复制之间存在直接联系,证明pAPN是PEDV的细胞感染受体之一。  相似文献   

12.
A novel enzyme with a specific phenylalanine aminopeptidase activity (ApsC) from Aspergillus niger (CBS 120.49) has been characterized. The derived amino acid sequence is not similar to any previously characterized aminopeptidase sequence but does share similarity with some mammalian acyl-peptide hydrolase sequences. ApsC was found to be most active towards phenylalanine beta-naphthylamide (F-beta NA) and phenylalanine para-nitroanilide (F-pNA), but it also displayed activity towards other amino acids with aromatic side chains coupled to beta NA; other amino acids with non-aromatic side chains coupled to either pNA or beta NA were not hydrolyzed or were poorly hydrolyzed. ApsC was not able to hydrolyze N-acetylalanine-pNA, a substrate for acyl-peptide hydrolases.  相似文献   

13.
Aminopeptidase activity from germinated jojoba cotyledons   总被引:2,自引:1,他引:1       下载免费PDF全文
One major and two minor aminopeptidase activities from germinated jojoba (Simmondsia chinensis) cotyledon extracts were separated by ammonium sulfate precipitation and chromatofocusing. None of the activities were inhibited by 1,10 phenanthroline.

The major aminopeptidase, purified 260-fold, showed a pH optimum of 6.9 with leucine-p-nitroanilide as substrate, a molecular weight estimated at 14,200 by electrophoretic analysis, and an isoelectric point of 4.5 according to the chromatofocusing pattern. Activity was inhibited by p-chloromercuribenzoate, slightly stimulated by 1,10 phenanthroline and 2-mercaptoethanol, and not influenced by Mg2+ or diethyl pyrocarbonate. Inhibition by p-chloromercuribenzoate was prevented by the presence of cysteine in the assay. Leucine-p-nitroanilide and leucine-β-naphthylamide were the most rapidly hydrolyzed of 11 carboxy-terminal end blocked synthetic substrates tested. No activity on endopeptidase or carboxypeptidase specific substrates was detected. The major aminopeptidase showed activity on a saline soluble, jojoba seed protein preparation and we suggest a possible physiological role for the enzyme in the concerted degradation of globulin reserve proteins during cotyledon senescence.

  相似文献   

14.
Abstract: Rat microglia in culture showed a high capacity to degrade neuropeptides compared with other glial cells. Leu-enkephalin was readily hydrolyzed to free tyrosine and Gly-Gly-Phe-Leu. Inhibition experiments and immunostaining revealed that aminopeptidase N (CD13) on the surface of microglia was responsible for enkephalin cleavage. Endopeptidase-24.11 ("enkephalinase"), angiotensin-converting enzyme, or carboxypeptidases could not be detected on microglia. Aminopeptidase N activity in microglia was considerably higher than in rat peripheral monocytes and macrophages, which both also exhibited low endopeptidase 24.11 activities. Activity of aminopeptidase N was upregulated by culture of microglia on astrocytes and downregulated by exposure of microglia to lipopolysaccharide. The occurrence of aminopeptidase N on microglia is in line with the view that they originate from the monocytic lineage.  相似文献   

15.
Abstract: The degradation of dynorphin-related peptides by the puromycin-sensitive aminopeptidase and aminopeptidase M was examined using these peptides as alternate substrate inhibitors. K i determinations showed that both aminopeptidases exhibit a higher affinity for longer dynorphin-related peptides, i.e., K i for dynorphin A-17 = 23–30 n M with the K i increasing to 25–50 µ M for the enkephalin pentapeptides. Binding appears dependent not only on peptide length, but also on its sequence. With aminopeptidase M, as the peptide size increases from five to 10 amino acids, k cat remains relatively constant; however, as the peptide size increases beyond a decapeptide, k cat decreases significantly. With the puromycin-sensitive aminopeptidase, similar results were obtained except that k cat was greatest for the pentapeptide. Thus, if one considers k cat/ K m as the relevant kinetic constant for estimating in vivo peptide hydrolysis, these results are consistent with the involvement of aminopeptidase M and the puromycin-sensitive aminopeptidase in the degradation of extended dynorphin-related peptides.  相似文献   

16.
Summary— A major antigen of the brush border membrane of Torpedo marmorata kidney was identified and purified by immunoprecipitation. The sequence of its 18 N terminal amino acids was determined and found to be very similar to that of mammalian aminopeptidase N (EC 3.4.11.2). Indeed aminopeptidase N activity was efficiently immunoprecipitated by monoclonal antibody 180K1. The purified antigen gives a broad band at 180 kDa after SDS-gel electrophoresis, which, after treatment by endoglycosidase F, is converted to a thinner band at 140 kDa. This antigen is therefore heavily glycosylated. Depending on solubilization conditions, both the antigen and peptidase activity were recovered either as a broad peak with a sedimentation coefficient of 18S (2% CHAPS) or as a single peak of 7.8S (1% CHAPS plus 0.2 % C12E9), showing that Torpedo aminopeptidase N behaves as an oligomer stabilized by hydrophobic interactions, easily converted into a 160 kDa monomer. The antigen is highly concentrated in the apical membrane of proximal tubule epithelial cells (600 gold particles/μm2 of brush border membrane) whereas no labeling could be detected in other cell types or in other membranes of the same cells (basolatéral membranes, vacuoles or vesicles). Monoclonal antibodies prepared here will be useful tools for further functional and structural studies of Torpedo kidney aminopeptidase N.  相似文献   

17.
Brain aminopeptidase activity has been suggested as a candidate for the regulation and biotransformation of several neuropeptides. In this paper, changes in Lys- and Leu-aminopeptidase activities in rat brain hemispheres, cerebellum and medulla were examined in 1-, 3-, 5- and 7-days postnatal subjects. Aminopeptidase activities were studied by measuring the rate of hydrolysis of the artificial chromogenic substrates Lys- and Leu-2-naphthylamides (fluorimetrically detected in triplicate). Both enzyme activities show a decrease on the 3rd day of life followed by increases on the 5th and 7th day postbirth. It is suggested that these activities could play a part in the neurochemical changes that take place during axonal and dendritic growth in the rat brain.  相似文献   

18.
The subcellular localization of aminopeptidase N (previously called aminoendopeptidase) has been investigated. This enzyme was found to be partially released (30-40%) by osmotic shock or by converting Escherichia coli K10 cells to spheroplasts. However, in all other E. coli strains (K12, B/r, MRE 600, ML 308) tested, this enzyme is not released at all by these procedures and thus behaves like a cytoplasmic enzyme. The crypticity of aminopeptidase N is surprisingly low, 75-85% of the enzyme activity is directly assayable in intact cells of any E. coli strain. Various inhibitors of transport systems do not interfer with this assay. Aminopeptidase activity could also be assayed in spheroplasts, even when an insolubilized substrate was used, which suggests a surface location of this enzyme. As well, N-ethylmaleimide (0.4 mM), under conditions which do not allow penetration in the cytoplasm, caused 70% inhibition of aminopeptidase N. Binding of 125I-labeled antiaminopeptidase N antibody to spheroplasts (from K12 strain) was used to assay the orientation of aminopeptidase N in the membrane. This enzyme is exposed on the outer surface of the cytoplasmic membrane. Confirmation of this orientation was obtained by comparing the accessibility of aminopeptidase, alkaline phosphatase and beta-galactosidase to fluorescamine in intact cells. Only 16% of the total beta-galactosidase was labeled with this fluorescent reagent whereas 44-45% of the aminopeptidase N and 59% of the alkaline phosphatase were labeled. Electron microscopic visualization of insolubilized reaction products of aminopeptidase N within the cells showed that these products are located at the poles of the cells. Neither mutant cells which were devoid of aminopeptidase N activity nor parental strains with the enzyme activity inhibited with phenylmercuric chloride contained the characteristic black caps. Thus, it appears that the periplasm is enlarged at the poles of the cells and that the reaction product is mainly located in these places. Investigation of the type of interactions of aminopeptidase N with the plasma membrane only revealed that aminopeptidase N has mainly an electrostatic interaction with the outer surface, probably mediated by magnesium ion bridges. Additional interactions are involved since disruption of the integrity of the cytoplasmic membrane is required to totally release this enzyme.  相似文献   

19.
Using synthetic substrates, an uncomplicated and sensitive procedure for the determination of extracellular aminopeptidase was developed. The studied enzyme produced by the tested plant material (calli, cell suspension culture and roots of Amsonia tabernaemontana Walt. seedlings) hydrolyzed the substrates β‐naphthylamides (βNA) and 4‐(phenylazo) phenylamides (PAP‐amide) of the amino acids to β‐naphthylamine and 4‐(phenylazo) aniline, respectively, and amino acid. The β‐naphthylamides of the amino acids were applied for the identification of extracellular aminopeptidase, whereas the 4‐(phenylazo) phenylamides of the amino acids were used for the determination of intra‐ and extracellular aminopeptidase activity. By simultaneous azocoupling of β‐naphthol with Fast Garnet GBC salt on agar plates a corresponding brown‐red hardly water‐soluble azo‐dye was produced. The evaluation of dyed zones allowed the extracellular aminopeptidase activity to be assessed. No coloration of the agar medium was observed without inoculum, with heat‐inactivated cells (10 min at 100 °C) or in medium inoculated without substrate. On the agar plates with substrate and sterile Amsonia seedlings, changes in coloration were observed indicating a release of aminopeptidase from the roots during germination. The results show a 91.0 % intracellular and 9.0 % extracellular distribution of aminopeptidase activity, when a cell suspension culture of A. tabernaemontana Walt. as the plant material was used. The agar plate method described permits the rapid, uncomplicated and specific detection of plant producers of extracellular aminopeptidase, which could be particularly useful in future inhibitory and/or biotechnological studies.  相似文献   

20.
An aminopeptidase A (EC 3.4.11.7) was purified to homogeneity from Bacillus licheniformis NS115 and its enzymatic properties were characterized. The enzyme had an apparent molecular mass of 64 kDa, consisting of heterodimeric 42 kDa and 22 kDa subunits, and is a new enzyme from N-terminal analysis of heavy and light subunits. The light suhunit had no catalytic activity against the substrate and apparent Km values of heavy and whole enzyme were 0.26 and 0.087 mM of γ-glutamyl-p-nitroanilide, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号