首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
These experiments were done to clarify that the differential effects of thyroxine (T(4)) and triiodothyronine (T(3)) on skeletal muscle protein turnover are caused by their roles on ATP production. Primary cultured chick muscle cells were treated with a physiological level of T(4) (60 ng/ml), T(3) (12 ng/ml), or ATP (0.5 mM) for 6 days and the protein content, ATP production, proteasome activity, and myofibrillar protein breakdown were measured. The protein content measured as an index of cell growth was not affected by T(4), T(3), or ATP. The cellular ATP level was increased by T(3) and ATP, but not by T(4). Proteasome activity and N(tau)-methylhistidine (MeHis) release measured as an index of myofiblillar protein breakdown was also increased by T(3) and ATP, but not by T(4). These results indicate that T(3) but not T(4) increases ATP production followed by an increase in proteasome activity, and thus stimulates myofibrillar proteolysis.  相似文献   

2.
Myofibrillar protein degradation was measured in 4-week-old normal (line 412) and genetically muscular-dystrophic (line 413) New Hampshire chickens by monitoring the rates of 3-methylhistidine excretion in vivo and in vitro. A method of perfusing breast and wing muscles was developed and the rate of 3-methylhistidine release in vitro was measured between 30 and 90min of perfusion. During this perfusion period, 3-methylhistidine release from the muscle preparation was linear, indicating that changes in 3-methylhistidine concentration of the perfusate were the result of myofibrillar protein degradation. Furthermore, the viability of the perfused muscle was maintained during this interval. After 60min of perfusion, ATP, ADP and creatine phosphate concentrations in pectoral muscle were similar to muscle freeze-clamped in vivo. Rates of glucose uptake and lactate production were constant during the perfusion. In dystrophic-muscle preparations, the rate of 3-methylhistidine release in vitro (nmol/h per g of dried muscle) was elevated 2-fold when compared with that in normal muscle. From these data the fractional degradation rates of myofibrillar protein in normal and dystrophic pectoral muscle were calculated to be 12 and 24% respectively. Daily 3-methylhistidine excretion (nmol/day per g body wt.) in vivo was elevated 1.35-fold in dystrophic chickens. Additional studies revealed that the anti-dystrophic drugs diphenylhydantoin and methylsergide, which improve righting ability of dystrophic chickens, did not alter 3-methylhistidine release in vitro. This result implies that changes in myofibrillar protein turnover are not the primary lesion in avian muscular dystrophy. From tissue amino acid analysis, the myofibrillar 3-methylhistidine content per g dry weight of muscle was similar in normal and dystrophic pectoral muscle. More than 96% of the 3-methylhistidine present in pectoral muscle was associated with the myofibrillar fraction. Dystrophic myofibrillar protein contained significantly less 3-methylhistidine (nmol/g of myofibrillar protein) than protein from normal muscle. This observation supports the hypothesis that there may be a block in the biochemical maturation and development of dystrophic muscle after hatching. Free 3-methylhistidine (nmol/g wet wt.) was elevated in dystrophic muscle, whereas blood 3-methylhistidine concentrations were similar in both lines. In summary, the increased myofibrillar protein catabolism demonstrated in dystrophic pectoral muscle correlates with the increased lysosomal cathepsin activity in this tissue as reported by others.  相似文献   

3.
Similar to all other eukaryotic cells and tissues muscle tissue contains the proteolytic system of 20S/26S proteasomes with the 20S proteasome existing predominantly in a latent state. Unlike with the mammalian enzymein vitro transition from the latent to the activated state of the 20S proteasomes isolated from muscle of several fish species and from lobster can be achieved by heat shock. It is very likely that the activated state of the 20S proteasome corresponds to the physiologically active form of the enzyme since only that one is able to attack sarcoplasmic and myofibrillar proteins to any significant extent. As perfusion of rat hindquarters with presumptive low molecular mass activators like free fatty acids does not result in an activation of the muscle proteasome other — possibly protein activators — may serve this purposein vivo. The 26S proteasome complex may be regarded as such a proteasome/activator complex. The 26S proteasome complex has the ability to degrade protein (-ubiquitin-conjugates) by an ATP-consuming reaction. Since increased amounts of ubiquitinated proteins as well as an enhanced activity of the ATP (-ubiquitin)-dependent proteolytic system have been measured in rat muscle tissue during various catabolic conditions, it is not unlikely that this pathway is responsible for catalysis of muscle protein breakdown.Abbreviations Bz benzoyl - PGPH peptidylglutamylpeptide hydrolysing - Suc succinyl - Z benzyloxycarbonyl  相似文献   

4.
The effect of triiodothyronine (T3′) on the uptake of several amino acids into the amino acid pools and into proteins of Rana catesbeiana tadpole liver and tail muscle and tail fin has been studied. Labeling of the alanine and glycine pool was stimulated in the liver more than the leucine pool. After exposure to T3 for 3 days, uptake of α-aminoisobutyric acid (a transport model substrate) into liver was stimulated about 55%. In tail tissues uptake of leucine was stimulated but uptake of alanine was depressed by T3. Incorporation of leucine and alanine into tissue protein was stimulated in the liver but inhibited in tail tissues after T3 injection.Changes in other macromolecules and ATP and ADP levels in liver and tail muscle were also investigated during induced metamorphosis. In the liver, the total DNA content did not change, but the RNA and protein content per liver increased significantly. The increase in RNA/DNA and protein/DNA ratios, suggested that liver cells underwent hypertrophy during induced metamorphosis. The ATP level showed a transient decrease after 3 days of T3 treatment. In tail muscle, protein and RNA content decreased as the muscle regressed, but the DNA content and ATP level remained unchanged throughout the experimental period.  相似文献   

5.
The present study characterized total and myofibrillar protein breakdown rates in a muscle preparation frequently used in vitro, i.e. incubated extensor digitorum longus (EDL) and soleus (SOL) muscles of young rats. Total and myofibrillar protein breakdown rates were assessed by determining net production by the incubated muscles of tyrosine and 3-methylhistidine (3-MH) respectively. Both amino acids were determined by h.p.l.c. Both total and myofibrillar protein breakdown rates were higher in SOL than in EDL muscles and were decreased by incubating the muscles maintained at resting length, rather than flaccid. After fasting for 72 h, total protein breakdown (i.e. tyrosine release) was increased by 73% and 138% in EDL muscles incubated flaccid and at resting length respectively. Net production of tyrosine by SOL muscle was not significantly altered by fasting. In contrast, myofibrillar protein degradation (i.e. 3-MH release) was markedly increased by fasting in both muscles. When tissue was incubated in the presence of 1 munit of insulin/ml, total protein breakdown rate was inhibited by 17-20%, and the response to the hormone was similar in muscles incubated flaccid or at resting length. In contrast, myofibrillar protein breakdown rate was not altered by insulin in any of the muscle preparations. The results support the concepts of individual regulation of myofibrillar and non-myofibrillar proteins and of different effects of various conditions on protein breakdown in different types of skeletal muscle. Thus determination of both tyrosine and 3-MH production in red and white muscle is important for a more complete understanding of protein regulation in skeletal muscle.  相似文献   

6.
7.
8.
It was found that the striated muscle of the Norway lobster (Nephrops norvegicus) does not exhibit the rigor mortis state otherwise typical for this type of muscle. This absence of rigor was investigated, concentrating on changes in the structure, ultrastructure and post-mortem biochemistry of the muscle. Samples were initially fixed for light and electron microscopy at the time of death and at different times post-mortem (3, 6, 12 and 24 h). Protein extracts were obtained in parallel to compare the banding patterns of the myofibrillar proteins using SDS-PAGE. A Western blot was applied to elucidate if myosin - a representative major myofibrillar protein - was degraded post-mortem. And finally, ATP levels in the muscle were analyzed using HPLC. Using TEM imaging it was found that between 12 and 24 h post-mortem at a storage temperature of 10 °C, when rigor mortis should set in (according to the muscular ATP concentrations), an extensive, but rather specific breakdown of myofibrillar proteins occurred. The Z-disks were degraded and the myofibrillar structure was lost. SDS-PAGE and Western blot clearly demonstrated the post-mortem breakdown of myosin. The nature of the observed protein breakdown seems to impede rigor mortis in some way by the activation of at least one of the several proteolytic systems (cathepsins, calpains and others) found in vertebrates and invertebrates. It is speculated that the proteolysis simply overtakes the rigor-inducing post-mortem changes.  相似文献   

9.
The role of prostaglandins in the regulation of muscle protein breakdown is controversial. We examined the influence of arachidonic acid (5 microM), prostaglandin E2 (PGE2) (2.8 microM) and the prostaglandin-synthesis inhibitor indomethacin (3 microM) on total and myofibrillar protein breakdown in rat extensor digitorum longus and soleus muscles incubated under different conditions in vitro. In other experiments, the effects of indomethacin, administered in vivo to septic rats (3 mg/kg, injected subcutaneously twice after induction of sepsis by caecal ligation and puncture) on plasma levels and muscle release of PGE2 and on total and myofibrillar protein breakdown rates were determined. Total and myofibrillar proteolysis was assessed by measuring production by incubated muscles of tyrosine and 3-methylhistidine respectively. Arachidonic acid or PGE2 added during incubation of muscles from normal rats did not affect total or myofibrillar protein degradation under a variety of different conditions in vitro. Indomethacin inhibited muscle PGE2 production by incubated muscles from septic rats, but did not lower proteolytic rates. Administration in vivo of indomethacin did not affect total or myofibrillar muscle protein breakdown, despite effective plasma levels of indomethacin with decreased plasma PGE2 levels and inhibition of muscle PGE2 release. The present results suggest that protein breakdown in skeletal muscle of normal or septic rats is not regulated by PGE2 or other prostaglandins.  相似文献   

10.
β-Hydroxy-β-methylbutyrate (HMB) is a leucine metabolite that may have a positive effect in protein catabolic conditions. Therefore, we hypothesized that HMB treatment could attenuate the sepsis-induced protein catabolic state. The aims of our study were to elucidate the effect of HMB in healthy and septic animals and to evaluate the differences in the action of HMB in different muscle types. Intact and septic (5 mg endotoxin/kg i.p.) rats were administered with HMB (0.5 g/kg/day) or saline. After 24 h, extensor digitorum longus (EDL) and soleus (SOL) muscles were isolated and used for determination of total and myofibrillar proteolysis, protein synthesis, leucine oxidation, activity of cathepsins B and L, chymotrypsin-like activity, and expression of α-subunits of proteasome. Our results indicate that the catabolic state induced by the endotoxin treatment was caused both by increase in protein breakdown (due to activation of proteasome system) and by attenuation of protein synthesis. The EDL (muscle composed of white, fast-twitch fibers) was more susceptible to these changes than the SOL (muscle composed of red, slow-twitch fibers). The HMB treatment had no effect in healthy animals but counteracted the changes in septic animals. The action of HMB was mediated by attenuation of proteasome activity and protein breakdown, not by stimulation of protein synthesis. More pronounced effect of the HMB treatment on myofibrillar proteolysis was observed in the SOL.  相似文献   

11.
The occurrence and regulation by thyroid hormone of four protein kinases (cyclic AMP independent and dependent, calcium/calmodulin stimulated, and calcium/phosphatidyl serine stimulated protein kinases) was studied in primary cultures of cells dissociated from embryonic mouse brain. Serum from a thyroidectomized calf, which contained low levels of L-3,5,3'-triiodothyronine, T3 (<25 ng/100 ml), and thyroxine, T4 (<1 g/100 ml) was used in the culture medium in place of normal calf-serum (T3, 130 ng/100 ml; T4 5.9 g/100 ml) to render the cultures responsive to exogenously added T3. Cultures grown in hypothyroid calf-serum containing medium had less cAMP dependent and independent protein kinase activity than control cultures grown in normal calf-serum containing medium. However, this activity was restorable to a considerable degree if the cultures grown in hypothyroid calf serum containing medium were supplemented with L-3,5,3'-triiodothyronine (T3). The presence of calcium/calmodulin stimulated protein kinase was also distinctly observed. In comparison, the activity of calcium/phosphatidyl serine stimulated protein kinase was less than the other protein kinases.  相似文献   

12.
This study was done to examine the effects of corticosterone, a glucocorticoid, on Ca2+ uptake, proteolysis, and Ca2+ channels in primary cultures of chick muscle cells, to clarify the mechanism of glucocorticoid action on muscle proteolysis. Chick muscle cells were incubated for 24 h in a medium containing corticosterone (30 ng/ml) when the cells were confluent (6 days). To examine the contribution of Ca2+ channels, nifedipine, a Ca2+ channels antagonist, was used. Ca2+ uptake measured with 45CaCl2 was increased three-fold by corticosterone, with a peak at 12 h after the treatment started. The growth of the cells estimated from the protein content and creatine kinase activity was not affected by corticosterone. Proteolysis, evaluated with [3H]tyrosine as a label of the protein and Ntau-methylhistidine release, was unchanged by corticosterone. However, the amount of easily releasable myofilament as a measure of myofibrillar disassembly in the muscle cells was increased by corticosterone, and prevented by nifedipine. These results show that corticosterone increases Ca2+ uptake and starts myofibrillar protein breakdown.  相似文献   

13.
Summary The iliofibularis muscle ofXenopus laevis is reported to contain five types of fibres which have different force—velocity relationships. Ten fibres of each type were selected on the basis of succinate dehydrogenase activity, cross-sectional area and location in the muscle, in order to assess the validity of the fibre type classification.Maximum calcium-stimulated myofibrillar ATPase activity (V max) and apparent Michaelis constant (K m) for ATP were determined for these 50 fibres from serial sections. The values obtained varied according to the type of fibre. Type 1 had the highest and type 5 the lowest values forK m andV max.In a separate experiment, single freeze-dried fibres were used to determine the relationship between their ATP content and apparentK m for ATP. There was a tendency for high ATP concentrations in fibres with highK m values.When myofibrillar ATPase activity was related to the maximum velocity of shortening of the five fibre types, a significant correlation was found. It is concluded that calcium-stimulated myofibrillar ATPase histochemistry allows an estimate of the maximum shortening velocity of muscle fibres fromXenopus laevis.  相似文献   

14.
15.
Several lines of evidence suggest that the ubiquitin-proteasome pathway is involved in sepsis-induced muscle catabolism. The gene expression of ubiquitin and several of the proteasome subunits was increased in muscle from both septic rats and patients. In other studies, the activity of isolated 20S proteasomes was stimulated in septic muscles. Sepsis-induced increase in muscle total and myofibrillar protein breakdown was inhibited with specific proteasome blockers. Although the ubiquitin-proteasome pathway is upregulated in septic muscle, it is still unclear how the myofibrillar proteins actin and myosin are ubiquitinated and become substrates for the 26S proteasome. Recent studies suggest that a calcium-dependent, calpain-mediated process releases myofilaments from the Z-disks during sepsis. It is possible that this process exposes destabilizing N-terminal residues on actin and myosin, making them suitable substrates for the N-end rule pathway involving the 14 kD ubiquitin-conjugating enzyme E214k and the ubiquitin-protein ligase E3.  相似文献   

16.
The effect of temperature and mass on specific growth rate (G) was examined in spotted wolffish Anarhichas minor of different size classes (ranging from 60 to 1500 g) acclimated at different temperatures (4, 8 and 12° C). The relationship between G and 20S proteasome activity in heart ventricle, liver and white muscle tissue was then assessed in fish acclimated at 4 and 12° C to determine if protein degradation via the proteasome pathway could be imposing a limitation on somatic growth. Cardiac 20S proteasome activity was not affected by acclimation temperature nor fish mass and had no correlation with G. Hepatic 20S proteasome activity was higher at 12° C but did not show any relationship with G. Partial correlation analysis showed that white muscle 20S proteasome activity was negatively correlated to G (partial Pearson's r = ?0·609) but only at cold acclimation temperature (4° C). It is suggested that acclimation to cold temperature involves compensation of the mitochondrial oxidative capacity which would in turn lead to increased production of oxidatively damaged proteins that are degraded by the proteasome pathway and ultimately negatively affects G at cold temperature.  相似文献   

17.

Background

Amyotrophic lateral sclerosis (ALS) is a disease caused by motor neuron degeneration. Recently, a novel SIGMAR1 gene variant (p.E102Q) was discovered in some familial ALS patients.

Methods

We address mechanisms underlying neurodegeneration caused by the mutation using Neuro2A cells overexpressing σ1RE102Q, a protein of a SIGMAR1 gene variant (p.E102Q) and evaluate potential amelioration by ATP production via methyl pyruvate (MP) treatment.

Results

σ1RE102Q overexpression promoted dissociation of the protein from the endoplasmic reticulum (ER) membrane and cytoplasmic aggregation, which in turn impaired mitochondrial ATP production and proteasome activity. Under ER stress conditions, overexpression of wild-type σ1R suppressed ER stress-induced mitochondrial injury, whereas σ1RE102Q overexpression aggravated mitochondrial damage and induced autophagic cell death. Moreover, σ1RE102Q-overexpressing cells showed aberrant extra-nuclear localization of the TAR DNA-binding protein (TDP-43), a condition exacerbated by ER stress. Treatment of cells with the mitochondrial Ca2 + transporter inhibitor Ru360 mimicked the effects of σ1RE102Q overexpression, indicating that aberrant σ1R-mediated mitochondrial Ca2 + transport likely underlies TDP-43 extra-nuclear localization, segregation in inclusion bodies, and ubiquitination. Finally, enhanced ATP production promoted by methyl pyruvate (MP) treatment rescued proteasome impairment and TDP-43 extra-nuclear localization caused by σ1RE102Q overexpression.

Conclusions

Our observations suggest that neurodegeneration seen in some forms of ALS are due in part to aberrant mitochondrial ATP production and proteasome activity as well as TDP-43 mislocalization resulting from the SIGMAR1 mutation.

General significance

ATP supplementation by MP represents a potential therapeutic strategy to treat ALS caused by SIGMAR1 mutation.  相似文献   

18.
A single dose of aminophylline (200 μmol/kg, i.p.) or triiodothyronine (T3, 300 μg/kg, i.p.) resulted in the induction of ornithine decarboxylase (ODC) in rat liver with maximal activity 10-fold and 6-fold above controls, respectively, 4 hr after the administration of the drug or hormone. After either agent, the induction of ODC was blocked by either cycloheximide or actinomycin D. The same concentrations of aminophylline and T3 administered simultaneously produced an additive 16-fold increase in ODC activity. After T3 administration, the cyclic AMP-dependent protein kinase activity ratio was unaltered at all times measured. After aminophylline, the protein kinase activity ratio was elevated by 15 min and remained elevated for 2 hr. Somatostatin administration (50 μg/100 g), which lowers plasma growth hormone to 30% of control, had no effect on the ability of T3 to induce ODC. These data suggest separate routes of induction of ODC in response to aminophylline and T3. Aminophylline induction occurs via cycyclic AMP-mediated event whereas T3 does not involve ccyclic AMP but results from a direct nuclear interaction.  相似文献   

19.
20.
The effect of corticosterone on myofibrillar protein breakdown in diabetic rats was investigated in order to assess the possible counteracting effects of the secondary rise in plasma insulin concentrations which normally accompanies such treatment. Nτ-Methylhistidine excretion, an index of myofibrillar protein breakdown, was compared before and after corticosterone treatment (4.0 mg/100 g body wt. per day) of normal control, adrenalectomized, 10-day-streptozotocin-diabetic and adrenalectomized diabetic rats. Diabetic rats received 1.5 units of insulin/100 g body wt. per day throughout the experiment and showed marked hyperglycaemia and glucosuria during corticosterone treatment, whereas non-diabetic rats had only mild hyperglycaemia but elevated insulin concentrations. Corticosterone treatment increased the average rate of myofibrillar protein breakdown by 68% and 95% respectively in non-diabetic and diabetic rats. Net loss of muscle non-collagen protein for the same 7-day period was greater in diabetic than in non-diabetic animals (4.15 versus 2.84% per day), and the calculated average synthesis rates were lowest in diabetic rats. Adrenalectomy had little effect except to decrease slightly the rate of muscle protein breakdown. These results show that the rise in plasma insulin concentrations that accompanies exogenous corticosterone administration to non-diabetic rats diminishes the catabolic effect of this glucocorticoid on muscle. Insulin appears to antagonize the effects of the glucocorticoid by attenuating the increased rates of myofibrillar protein breakdown and, to a lesser extent, by limiting the decrease in synthesis rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号