首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathways for isoprenoid biosynthesis both culminate in the production of the two-five carbon prenyl diphosphates: dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP). These are the building blocks for higher isoprenoids, including many that have industrial and pharmaceutical applications. With growing interest in producing commercial isoprenoids through microbial engineering, reports have appeared of toxicity associated with the accumulation of prenyl diphosphates in Escherichia coli expressing a heterologous MVA pathway. Here we explored whether similar prenyl diphosphate toxicity, related to MEP pathway flux, could also be observed in the bacterium Bacillus subtilis. After genetic and metabolic manipulations of the endogenous MEP pathway in B. subtilis, measurements of cell growth, MEP pathway flux, and DMAPP contents suggested cytotoxicity related to prenyl diphosphate accumulation. These results have implications as to understanding the factors impacting isoprenoid biosynthesis in microbial systems.  相似文献   

2.
Plants produce the common isoprenoid precursors isopentenyl diphosphate and dimethylallyl diphosphate (DMAPP) through the methylerythritol phosphate (MEP) pathway in plastids and the mevalonate (MVA) pathway in the cytosol. To assess which pathways contribute DMAPP for cytokinin biosynthesis, metabolites from each isoprenoid pathway were selectively labeled with (13)C in Arabidopsis seedlings. Efficient (13)C labeling was achieved by blocking the endogenous pathway genetically or chemically during the feed of a (13)C labeled precursor specific to the MEP or MVA pathways. Liquid chromatography-mass spectrometry analysis demonstrated that the prenyl group of trans-zeatin (tZ) and isopentenyladenine is mainly produced through the MEP pathway. In comparison, a large fraction of the prenyl group of cis-zeatin (cZ) derivatives was provided by the MVA pathway. When expressed as fusion proteins with green fluorescent protein in Arabidopsis cells, four adenosine phosphate-isopentenyltransferases (AtIPT1, AtIPT3, AtIPT5, and AtIPT8) were found in plastids, in agreement with the idea that the MEP pathway primarily provides DMAPP to tZ and isopentenyladenine. On the other hand, AtIPT2, a tRNA isopentenyltransferase, was detected in the cytosol. Because the prenylated adenine moiety of tRNA is usually of the cZ type, the formation of cZ in Arabidopsis seedlings might involve the transfer of DMAPP from the MVA pathway to tRNA. Distinct origins of large proportions of DMAPP for tZ and cZ biosynthesis suggest that plants are able to separately modulate the level of these cytokinin species.  相似文献   

3.
Isoprenoids are produced in all organisms but are especially abundant and diverse in plants. Two separate pathways operate in plant cells to synthesize prenyl diphosphate precursors common to all isoprenoids. Cytosolic and mitochondrial precursors are produced by the mevalonic acid (MVA) pathway whereas the recently discovered methylerythritol phosphate (MEP) pathway is located in plastids. However, both pathways may participate in the synthesis of at least some isoprenoids under certain circumstances. Although genes encoding all the enzymes from both pathways have already been cloned, little is known about the regulatory mechanisms that control the supply of isoprenoid precursors. Genetic approaches are providing valuable information on the regulation of both pathways. Thus, recent data from overexpression experiments in transgenic plants show that several enzymes share control over the metabolic flux through the MEP pathway, whereas a single regulatory step has been proposed for the MVA pathway. Identification of Arabidopsis thaliana mutants that are resistant to the inhibition of the MVA and the MEP pathways is a promising approach to uncover mechanisms involved in the crosstalk between pathways. The characterization of some of these mutants impaired in light perception and signaling has recently provided genetic evidence for a role of light as a key factor to modulate the availability of isoprenoid precursors in Arabidopsis seedlings. The picture emerging from recent data supports that a complex regulatory network appears to be at work in plant cells to ensure the supply of isoprenoid precursors when needed.  相似文献   

4.
Metabolic engineering for increased isoprenoid production often benefits from the simultaneous expression of the two naturally available isoprenoid metabolic routes, namely the 2-methyl-D-erythritol 4-phosphate (MEP) pathway and the mevalonate (MVA) pathway. Quantification of the contribution of these pathways to the overall isoprenoid production can help to obtain a better understanding of the metabolism within a microbial cell factory. Such type of investigation can benefit from 13C metabolic flux ratio studies. Here, we designed a method based on parallel labeling experiments (PLEs), using [1-13C]- and [4-13C]glucose as tracers to quantify the metabolic flux ratios in the glycolytic and isoprenoid pathways. By just analyzing a reporter isoprenoid molecule and employing only four equations, we could describe the metabolism involved from substrate catabolism to product formation. These equations infer 13C atom incorporation into the universal isoprenoid building blocks, isopentenyl-pyrophosphate (IPP) and dimethylallyl-pyrophosphate (DMAPP). Therefore, this renders the method applicable to the study of any of isoprenoid of interest. As proof of principle, we applied it to study amorpha-4,11-diene biosynthesis in the bacterium Rhodobacter sphaeroides. We confirmed that in this species the Entner-Doudoroff pathway is the major pathway for glucose catabolism, while the Embden-Meyerhof-Parnas pathway contributes to a lesser extent. Additionally, we demonstrated that co-expression of the MEP and MVA pathways caused a mutual enhancement of their metabolic flux capacity. Surprisingly, we also observed that the isoprenoid flux ratio remains constant under exponential growth conditions, independently from the expression level of the MVA pathway. Apart from proposing and applying a tool for studying isoprenoid biosynthesis within a microbial cell factory, our work reveals important insights from the co-expression of MEP and MVA pathways, including the existence of a yet unclear interaction between them.  相似文献   

5.
Isopentenyl/dimethylallyl diphosphate isomerase (IPI) catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are the universal C(5) units of isoprenoids. In plants, IPP and DMAPP are synthesized via the cytosolic mevalonate (MVA) and plastidic methylerythritol phosphate (MEP) pathways, respectively. However, the role of IPI in each pathway and in plant development is unknown due to a lack of genetic studies using IPI-defective mutants. Here, we show that the atipi1atipi2 double mutant, which is defective in two Arabidopsis IPI isozymes, exhibits dwarfism and male sterility under long-day conditions and decreased pigmentation under continuous light, whereas the atipi1 and atipi2 single mutants are phenotypically normal. We also show that the sterol and ubiquinone levels in the double mutant are <50% of those in wild-type plants, and that the male-sterile phenotype is chemically complemented by squalene, a sterol precursor. In vivo isotope labeling experiments using the atipi1atipi2 double mutant revealed a decrease in the incorporation of MVA (in its lactone form) into sterols, with no decrease in the incorporation of MEP pathway intermediates into tocopherol. These results demonstrate a critical role for IPI in isoprenoid biosynthesis via the MVA pathway, and they imply that IPI is essential for the maintenance of appropriate levels of IPP and DMAPP in different subcellular compartments in plants.  相似文献   

6.
Supply of precursors for carotenoid biosynthesis in plants   总被引:2,自引:0,他引:2  
Carotenoids are isoprenoids of industrial and nutritional interest produced by all photosynthetic organisms, including plants. Too often, the metabolic engineering of plant carotenogenesis has been obstructed by our limited knowledge on how the endogenous pathway interacts with other related metabolic pathways, particularly with those involved in the production of isoprenoid precursors. However, recent discoveries are providing new insights into this field. All isoprenoids derive from prenyl diphosphate precursors. In the case of carotenoids, these precursors are produced predominantly by the methylerythritol 4-phosphate (MEP) pathway in plants. This review focuses on the progress in our understanding of how manipulation of the MEP pathway impacts carotenoid biosynthesis and on the discoveries underlining the central importance of coordinating the supply of MEP-derived precursors with the biosynthesis of carotenoids and other derived isoprenoids.  相似文献   

7.
Isopentenyl diphosphate (IPP) is the biological C5 precursor of isoprenoids. By labeling experiments using [1-13C]glucose, higher plants were shown to possess two distinct biosynthetic routes for IPP biosynthesis: while the cytoplasmic sterols were formed via the acetate/mevalonate pathway, the chloroplast-bound isoprenoids (β-carotene, lutein, prenyl chains of chlorophylls and plastoquinone-9) were synthesized via a novel IPP biosynthesis pathway (glyceraldehyde phosphate/pyruvate pathway) which was first found in eubacteria and a green alga. The dichotomy in isoprenoid biosynthesis in higher plants allows a reasonable interpretation of previous odd and inconclusive results concerning the biosynthesis of chloroplast isoprenoids, which so far had mainly been interpreted in the frame of models using compartmentation of the mevalonate pathway.  相似文献   

8.
Triterpenes are thirty‐carbon compounds derived from the universal five‐carbon prenyl precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Normally, triterpenes are synthesized via the mevalonate (MVA) pathway operating in the cytoplasm of eukaryotes where DMAPP is condensed with two IPPs to yield farnesyl diphosphate (FPP), catalyzed by FPP synthase (FPS). Squalene synthase (SQS) condenses two molecules of FPP to generate the symmetrical product squalene, the first committed precursor to sterols and most other triterpenes. In the green algae Botryococcus braunii, two FPP molecules can also be condensed in an asymmetric manner yielding the more highly branched triterpene, botryococcene. Botryococcene is an attractive molecule because of its potential as a biofuel and petrochemical feedstock. Because B. braunii, the only native host for botryococcene biosynthesis, is difficult to grow, there have been efforts to move botryococcene biosynthesis into organisms more amenable to large‐scale production. Here, we report the genetic engineering of the model monocot, Brachypodium distachyon, for botryococcene biosynthesis and accumulation. A subcellular targeting strategy was used, directing the enzymes (botryococcene synthase [BS] and FPS) to either the cytosol or the plastid. High titres of botryococcene (>1 mg/g FW in T0 mature plants) were obtained using the cytosolic‐targeting strategy. Plastid‐targeted BS + FPS lines accumulated botryococcene (albeit in lesser amounts than the cytosolic BS + FPS lines), but they showed a detrimental phenotype dependent on plastid‐targeted FPS, and could not proliferate and survive to set seed under phototrophic conditions. These results highlight intriguing differences in isoprenoid metabolism between dicots and monocots.  相似文献   

9.
Isoprenoids consist of a large class of compounds that are present in all living organisms. They are derived from the 5C building blocks isopentenyl diphosphate (IDP) and its isomer dimethylallyl diphosphate (DMADP). In plants, IDP is synthesized in the cytoplasm from mevalonic acid via the MVA pathway, and in plastids from 2‐C‐methyl‐d ‐erythritol‐4‐phosphate through the MEP pathway. The enzyme IDP isomerase (IDI) catalyzes the interconversion between IDP and DMADP. Most plants contain two IDI enzymes, the functions of which are characteristically compartmentalized in the cells. Carotenoids are isoprenoids that play essential roles in photosynthesis and provide colors to flowers and fruits. They are synthesized in the plastids via the MEP pathway. Fruits of Solanum lycopersicum (tomato) accumulate high levels of the red carotene lycopene. We have identified mutations in tomato that reduce overall carotenoid accumulation in fruits. Four alleles of a locus named FRUIT CAROTENOID DEFICIENT 1 (fcd1) were characterized. Map‐based cloning of fcd1 indicated that this gene encodes the plastidial enzyme IDI1. Lack of IDI1 reduced the concentration of carotenoids in fruits, flowers and cotyledons, but not in mature leaves. These results indicate that the plastidial IDI plays an important function in carotenoid biosynthesis, thus highlighting its role in optimizing the ratio between IDP and DMADP as precursors for different downstream isoprenoid pathways.  相似文献   

10.
The methylerythritol 4-phosphate (MEP) pathway synthesizes the precursors for an astonishing diversity of plastid isoprenoids, including the major photosynthetic pigments chlorophylls and carotenoids. Since the identification of the first two enzymes of the pathway, deoxyxylulose 5-phoshate (DXP) synthase (DXS) and DXP reductoisomerase (DXR), they both were proposed as potential control points. Increased DXS activity has been shown to up-regulate the production of plastid isoprenoids in all systems tested, but the relative contribution of DXR to the supply of isoprenoid precursors is less clear. In this work, we have generated transgenic Arabidopsis thaliana plants with altered DXS and DXR enzyme levels, as estimated from their resistance to clomazone and fosmidomycin, respectively. The down-regulation of DXR resulted in variegation, reduced pigmentation and defects in chloroplast development, whereas DXR-overexpressing lines showed an increased accumulation of MEP- derived plastid isoprenoids such as chlorophylls, carotenoids, and taxadiene in transgenic plants engineered to produce this non-native isoprenoid. Changes in DXR levels in transgenic plants did not result in changes in␣DXS gene expression or enzyme accumulation, confirming that the observed effects on plastid isoprenoid levels in DXR-overexpressing lines were not an indirect consequence of altering DXS levels. The results indicate that the biosynthesis of MEP (the first committed intermediate of the pathway) limits the production of downstream isoprenoids in Arabidopsis chloroplasts, supporting a role for DXR in the control of the metabolic flux through the MEP pathway.  相似文献   

11.
12.
Higher plants, several algae, bacteria, some strains of Streptomyces and possibly malaria parasite Plasmodium falciparum contain the novel, plastidic DOXP/MEP pathway for isoprenoid biosynthesis. This pathway, alternative with respect to the classical mevalonate pathway, starts with condensation of pyruvate and glyceraldehyde-3-phosphate which yields 1-deoxy-D-xylulose 5-phosphate (DOXP); the latter product can be converted to isopentenyl diphosphate (IPP) and eventually to isoprenoids or thiamine and pyridoxal. Subsequent reactions of this pathway involve transformation of DOXP to 2-C-methyl-D-erythritol 4-phosphate (MEP) which after condensation with CTP forms 4-diphosphocytidyl-2-amethyl-D-erythritol (CDP-ME). Then CDP-ME is phosphorylated to 4-diphosphocytidyl-2-amethyl-D-erythritol 2-phosphate (CDP-ME2P) and to 2-C-methyl-D-erythritol-2,4-cyclodiphosphate (ME-2,4cPP) which is the last known intermediate of the DOXP/MEP pathway. For- mation of IPP and dimethylallyl diphosphate (DMAPP) from ME-2,4cPP still requires clarification. This novel pathway appears to be involved in biosynthesis of carotenoids, phytol (side chain of chlorophylls), isoprene, mono-, di-, tetraterpenes and plastoquinone whereas the mevalonate pathway is responsible for formation of sterols, sesquiterpenes and triterpenes. Several isoprenoids were found to be of mixed origin suggesting that some exchange and/or cooperation exists between these two pathways of different biosynthetic origin. Contradictory results described below could indicate that these two pathways are operating under different physiological conditions of the cell and are dependent on the developmental state of plastids.  相似文献   

13.
Abstract

Isoprenoids are a large and structurally diverse family of compounds that play essential roles in plants as hormones, photosynthetic pigments, electron carriers, and membrane components as well as serving in communication and defense. Now it is unequivocally proved that two distinct and independent biosynthetic routes exist to isopentenyl diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate (DMAPP), the two building blocks for isoprenoids in plants. The cytosolic pathway is triggered by Acetyl Coenzyme A where classical intermediate mevalonic acid is formed which, in turn, converts into IPP and DMAPP. These further combine to elongate into sesquiterpenes (C15) and triterpenes (C30); whereas the plastidial pathway provides precursors for the biosynthesis of isoprene (C5), monoterpenes (C10), diterpenes (C20), and tetraterpenes (C40). The pathway is initiated by the transketolase-type condensation of pyruvate (C-2 and C-3) and glyceraldehyde-3-phosphate to 1-deoxyxylulose-5-phosphate (DXP), followed by the isomerization and reduction of this intermediate to 2-C-methylerythritol-4-phosphate (MEP), formation of the cytidine 5'-diphosphate (CDP) derivative, phosphorylation at C2, and cyclization to 2-C-methylerythritol-2,4-cyclodiphosphate (CDP-Me2P as the last defined step). The genes encoding each enzyme of the plastid pathway up to formation of the cyclic diphosphate have been isolated from plants and from eubacteria where the pathway exists. Studies on the complete biosynthetic pathways using radio-labeled substrates will help in characterizing and identifying the enzymes involved in each and every step of cyclization, isomerization, chain elongation, hydrogen shifts, oxidation and hydroxylation during the formation of many isoprenoid compounds present in food and flavor substances and are highly useful to human beings.  相似文献   

14.
Gibberellins (GAs) are diterpene plant hormones essential for many developmental processes. Although the GA biosynthesis pathway has been well studied, our knowledge on its early stage is still limited. There are two possible routes for the biosynthesis of isoprenoids leading to GAs, the mevalonate (MVA) pathway in the cytosol and the methylerythritol phosphate (MEP) pathway in plastids. To distinguish these possibilities, metabolites from each isoprenoid pathway were selectively labeled with (13)C in Arabidopsis seedlings. Efficient (13)C-labeling was achieved by blocking the endogenous pathway chemically or genetically during the feed of a (13)C-labeled precursor specific to the MVA or MEP pathways. Gas chromatography-mass spectrometry analyses demonstrated that both MVA and MEP pathways can contribute to the biosyntheses of GAs and campesterol, a cytosolic sterol, in Arabidopsis seedlings. While GAs are predominantly synthesized through the MEP pathway, the MVA pathway plays a major role in the biosynthesis of campesterol. Consistent with some crossover between the two pathways, phenotypic defects caused by the block of the MVA and MEP pathways were partially rescued by exogenous application of the MEP and MVA precursors, respectively. We also provide evidence to suggest that the MVA pathway still contributes to GA biosynthesis when this pathway is limiting.  相似文献   

15.
Carotenoids are isoprenoid pigments that function as photoprotectors, precursors of the hormone abscisic acid (ABA), colorants and nutraceuticals. A major problem for the metabolic engineering of high carotenoid levels in plants is the limited supply of their isoprenoid precursor geranylgeranyl diphosphate (GGPP), formed by condensation of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) units usually synthesized by the methylerythritol phosphate (MEP) pathway in plastids. Our earlier work with three of the seven MEP pathway enzymes suggested that the first reaction of the pathway catalyzed by deoxyxylulose 5-phosphate synthase (DXS) is limiting for carotenoid biosynthesis during tomato (Lycopersicon esculentum) fruit ripening. Here we investigate the contribution of the enzyme hydroxymethylbutenyl diphosphate reductase (HDR), which simultaneously synthesizes IPP and DMAPP in the last step of the pathway. A strong upregulation of HDR gene expression was observed in correlation with carotenoid production during both tomato fruit ripening and Arabidopsis thaliana seedling deetiolation. Constitutive overexpression of the tomato cDNA encoding HDR in Arabidopsis did not increase carotenoid levels in etioplasts. By contrast, light-grown transgenic plants showed higher carotenoid levels and an enhanced seed dormancy phenotype suggestive of increased ABA levels. The analysis of double transgenic Arabidopsis plants overproducing both the enzyme taxadiene synthase (which catalyzes the production of the non-native isoprenoid taxadiene from GGPP) and either HDR or DXS showed a twofold stronger effect of HDR in increasing taxadiene levels. Together, the data support a major role for HDR in controlling the production of MEP-derived precursors for plastid isoprenoid biosynthesis.  相似文献   

16.
In most of the pathogenic organisms including Plasmodium falciparum, isoprenoids are synthesized via MEP (MethylErythritol 4-Phosphate) pathway. LytB is the last enzyme of this pathway which catalyzes the conversion of (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate (HMBPP) into the two isoprenoid precursors: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Since the MEP pathway is not used by humans, it represents an attractive target for the development of new anti-malarial compounds or inhibitors. Here a systematic in silico study has been conducted to get an insight into the structure of Plasmodium lytB as well as its affinities towards different inhibitors. We used comparative modeling technique to predict the three-dimensional (3D) structure of Plasmodium LytB taking Escherichia coli LytB protein (PDB ID: 3KE8) as template and the model was subsequently refined through molecular dynamics (MD) simulation. A large ligand data-set containing diphospate group was subjected for virtual screening against the target using GOLD 5.2 program. Considering the mode of binding and affinities, 17 leads were selected on basis of binding energies in comparison to its substrate HMBPP (Gold.Chemscore.DG: -20.9734 kcal/mol). Among them, five were discarded because of their inhibitory activity towards other human enzymes. The rest 12 potential leads carry all the properties of any “drug like” molecule and the knowledge of Plasmodium LytB-inhibitory mechanism which can provide valuable support for the anti-malarial-inhibitor design in future.  相似文献   

17.
The biosynthesis of the C5 building block of isoprenoids, isopentenyl diphosphate (IPP), proceeds in higher plants via two basically different pathways; in the cytosolic compartment sterols are formed via mevalonate (MVA), whereas in the plastids the isoprenoids are formed via the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway (DOXP/MEP pathway). In the present investigation, we found for the Charophyceae, being close relatives to land plants, and in the original green flagellate Mesostignma virilde the same IPP biosynthesis pattern as in higher plants: sterols are formed via MVA, and the phytol-moiety of chlorophylls via the DOXP/MEP pathway. In contrast, representatives of four classes of the Chlorophyta (Chlorophyceae, Ulvophyceae, Trebouxiophyceae, Prasinophyceae) did not incorporate MVA into sterols or phytol. Instead, they incorporated [1-2H1]-1-deoxy-D-xylulose into phytol and sterols. The results indicate that the entire Chlorophyta lineage, which is well separated from the land plant/Charophyceae lineage, is devoid of the acetate/ MVA pathway and uses the DOXP/MEP pathway not only for plastidic, but also for cytosolic isoprenoid formation.  相似文献   

18.
19.
Plants synthesize an astonishing diversity of isoprenoids, some of which play essential roles in photosynthesis, respiration, and the regulation of growth and development. Two independent pathways for the biosynthesis of isoprenoid precursors coexist within the plant cell: the cytosolic mevalonic acid (MVA) pathway and the plastidial methylerythritol phosphate (MEP) pathway. In at least some plants (including Arabidopsis), common precursors are exchanged between the cytosol and the plastid. However, little is known about the signals that coordinate their biosynthesis and exchange. To identify such signals, we arrested seedling development by specifically blocking the MVA pathway with mevinolin (MEV) or the MEP pathway with fosmidomycin (FSM) and searched for MEV-resistant Arabidopsis mutants that also could survive in the presence of FSM. Here, we show that one such mutant, rim1, is a new phyB allele (phyB-m1). Although the MEV-resistant phenotype of mutant seedlings is caused by the upregulation of MVA synthesis, its resistance to FSM most likely is the result of an enhanced intake of MVA-derived isoprenoid precursors by the plastid. The analysis of other light-hyposensitive mutants showed that distinct light perception and signal transduction pathways regulate these two differential mechanisms for resistance, providing evidence for a coordinated regulation of the activity of the MVA pathway and the crosstalk between cell compartments for isoprenoid biosynthesis during the first stages of seedling development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号