首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
For years, studies of founder populations and genetic isolates represented the mainstream of genetic mapping in the effort to target genetic defects causing Mendelian disorders. The genetic homogeneity of such populations as well as relatively homogeneous environmental exposures were also seen as primary advantages in studies of genetic susceptibility loci that underlie complex diseases. European colonization of the St-Lawrence Valley by a small number of settlers, mainly from France, resulted in a founder effect reflected by the appearance of a number of population-specific disease-causing mutations in Quebec. The purported genetic homogeneity of this population was recently challenged by genealogical and genetic analyses. We studied one of the contributing factors to genetic heterogeneity, early Native American admixture that was never investigated in this population before. Consistent admixture estimates, in the order of one per cent, were obtained from genome-wide autosomal data using the ADMIXTURE and HAPMIX software, as well as with the fastIBD software evaluating the degree of the identity-by-descent between Quebec individuals and Native American populations. These genomic results correlated well with the genealogical estimates. Correlations are imperfect most likely because of incomplete records of Native founders’ origin in genealogical data. Although the overall degree of admixture is modest, it contributed to the enrichment of the population diversity and to its demographic stratification. Because admixture greatly varies among regions of Quebec and among individuals, it could have significantly affected the homogeneity of the population, which is of importance in mapping studies, especially when rare genetic susceptibility variants are in play.  相似文献   

2.
To better design association studies for complex traits in isolated populations it''s important to understand how history and isolation moulded the genetic features of different communities. Population isolates should not “a priori” be considered homogeneous, even if the communities are not distant and part of a small region. We studied a particular area of Sardinia called Ogliastra, characterized by the presence of several distinct villages that display different history, immigration events and population size. Cultural and geographic isolation characterized the history of these communities. We determined LD parameters in 8 villages and defined population structure through high density SNPs (about 360 K) on 360 unrelated people (45 selected samples from each village). These isolates showed differences in LD values and LD map length. Five of these villages show high LD values probably due to their reduced population size and extreme isolation. High genetic differentiation among villages was detected. Moreover population structure analysis revealed a high correlation between genetic and geographic distances. Our study indicates that history, geography and biodemography have influenced the genetic features of Ogliastra communities producing differences in LD and population structure. All these data demonstrate that we can consider each village an isolate with specific characteristics. We suggest that, in order to optimize the study design of complex traits, a thorough characterization of genetic features is useful to identify the presence of sub-populations and stratification within genetic isolates.  相似文献   

3.
Knowledge of the genetic population structure lies at the heart of mapping studies aiming genes responsible for Mendelian and complex traits. The Quebec population, which is of mostly French descent, is considered an excellent model for such genetic epidemiological endeavours because it is a young founder population. Yet, the assessment of the founder effect has relied mostly on the observed distribution of monogenic diseases and on the analysis of the underlying mutations with investigations focusing on the Saguenay region. To eliminate this clinical bias and to obtain a more complete image of the genetic diversity, different regional populations of Quebec were investigated by analysing neutral markers that represent maternal, paternal and X chromosome lineages. Results indicate that Quebec does not appear more homogeneous nor significantly different from European populations. However, a series of regional founder effects, particularly visible at the level of rare variants, are observed. These effects can be explained by the successive migrations of descendants of the first immigrants from the initial sites of settlement towards the outer regions. Depending on the number of founders and their diversity, as well as on the degree of isolation and the magnitude of the interbreeding with the neighbouring or local populations, such as Amerindians or later migrants, the consequences of these regional founder effects are more or less detectable in the contemporary population.  相似文献   

4.

Background

Genetic relatedness or similarity between individuals is a key concept in population, quantitative and conservation genetics. When the pedigree of a population is available and assuming a founder population from which the genealogical records start, genetic relatedness between individuals can be estimated by the coancestry coefficient. If pedigree data is lacking or incomplete, estimation of the genetic similarity between individuals relies on molecular markers, using either molecular coancestry or molecular covariance. Some relationships between genealogical and molecular coancestries and covariances have already been described in the literature.

Methods

We show how the expected values of the empirical measures of similarity based on molecular marker data are functions of the genealogical coancestry. From these formulas, it is easy to derive estimators of genealogical coancestry from molecular data. We include variation of allelic frequencies in the estimators.

Results

The estimators are illustrated with simulated examples and with a real dataset from dairy cattle. In general, estimators are accurate and only slightly biased. From the real data set, estimators based on covariances are more compatible with genealogical coancestries than those based on molecular coancestries. A frequently used estimator based on the average of estimated coancestries produced inflated coancestries and numerical instability. The consequences of unknown gene frequencies in the founder population are briefly discussed, along with alternatives to overcome this limitation.

Conclusions

Estimators of genealogical coancestry based on molecular data are easy to derive. Estimators based on molecular covariance are more accurate than those based on identity by state. A correction considering the random distribution of allelic frequencies improves accuracy of these estimators, especially for populations with very strong drift.  相似文献   

5.
Population stratification results from unequal, nonrandom genetic contribution of ancestors and should be reflected in the underlying genealogies. In Quebec, the distribution of Mendelian diseases points to local founder effects suggesting stratification of the contemporary French Canadian gene pool. Here we characterize the population structure through the analysis of the genetic contribution of 7,798 immigrant founders identified in the genealogies of 2,221 subjects partitioned in eight regions. In all but one region, about 90% of gene pools were contributed by early French founders. In the eastern region where this contribution was 76%, we observed higher contributions of Acadians, British and American Loyalists. To detect population stratification from genealogical data, we propose an approach based on principal component analysis (PCA) of immigrant founders' genetic contributions. This analysis was compared with a multidimensional scaling of pairwise kinship coefficients. Both methods showed evidence of a distinct identity of the northeastern and eastern regions and stratification of the regional populations correlated with geographical location along the St-Lawrence River. In addition, we observed a West-East decreasing gradient of diversity. Analysis of PC-correlated founders illustrates the differential impact of early versus latter founders consistent with specific regional genetic patterns. These results highlight the importance of considering the geographic origin of samples in the design of genetic epidemiology studies conducted in Quebec. Moreover, our results demonstrate that the study of deep ascending genealogies can accurately reveal population structure.  相似文献   

6.
Norfolk Island is a human genetic isolate, possessing unique population characteristics that could be utilized for complex disease gene localization. Our intention was to evaluate the extent and strength of linkage disequilibrium (LD) in the Norfolk isolate by investigating markers within Xq13.3 and the NOS2A gene encoding the inducible nitric oxide synthase. A total of six microsatellite markers spanning approximately 11 Mb were assessed on chromosome Xq13.3 in a group of 56 men from Norfolk Island. Additionally, three single nucleotide polymorphisms (SNPs) localizing to the NOS2A gene were analyzed in a subset of the complex Norfolk pedigree. With the exception of two of the marker pairs, one of which is the most distantly spaced marker, all the Xq13.3 marker pairs were found to be in significant LD indicating that LD extends up to 9.5-11.5 Mb in the Norfolk Island population. Also, all SNPs studied showed significant LD in both Norfolk Islanders and Australian Caucasians, with two of the marker pairs in complete LD in the Norfolk population only. The Norfolk Island study population possesses a unique set of characteristics including founder effect, geographical isolation, exhaustive genealogical information and phenotypic data of use to cardiovascular disease risk traits. With LD extending up to 9.5-11 Mb, the Norfolk isolate should be a powerful resource for the localization of complex disease genes.  相似文献   

7.
A basic knowledge on linkage disequilibrium (LD) is necessary in order to determine resolution of association studies. We investigated the extent and patterns of LD in a self-incompatible species (Prunus avium L.), in 3 groups (wild cherry, sweet cherry landraces and sweet cherry modern varieties), using a set of 35 microsatellite markers and the gametophytic self-incompatibility locus. Since population structure might create spurious LD, we thus used the information provided by a structure analysis published in a previous study to perform the LD analysis. In the current study, we detected a greater LD extent in sweet cherry than in wild cherry, which is plausibly due to the bottleneck associated with domestication and breeding. Higher LD values in sweet cherry sub-groups may be explained by smaller sample sizes. We also showed that the remaining structure in the groups of sweet cherry, in particular landraces, is responsible for a part of the LD extent. Intra-group relatedness may also account for extensive LD in two sub-groups. These results demonstrate, if ever necessary, the importance of controlling the genetic structure and relatedness when estimating LD. Moreover, LD decays very rapidly with genetic linkage distance in both wild and sweet cherries, which seems promising for future association studies.  相似文献   

8.
Genealogical inference from genetic data is essential for a variety of applications in human genetics. In genome-wide and sequencing association studies, for example, accurate inference on both recent genetic relatedness, such as family structure, and more distant genetic relatedness, such as population structure, is necessary for protection against spurious associations. Distinguishing familial relatedness from population structure with genotype data, however, is difficult because both manifest as genetic similarity through the sharing of alleles. Existing approaches for inference on recent genetic relatedness have limitations in the presence of population structure, where they either (1) make strong and simplifying assumptions about population structure, which are often untenable, or (2) require correct specification of and appropriate reference population panels for the ancestries in the sample, which might be unknown or not well defined. Here, we propose PC-Relate, a model-free approach for estimating commonly used measures of recent genetic relatedness, such as kinship coefficients and IBD sharing probabilities, in the presence of unspecified structure. PC-Relate uses principal components calculated from genome-screen data to partition genetic correlations among sampled individuals due to the sharing of recent ancestors and more distant common ancestry into two separate components, without requiring specification of the ancestral populations or reference population panels. In simulation studies with population structure, including admixture, we demonstrate that PC-Relate provides accurate estimates of genetic relatedness and improved relationship classification over widely used approaches. We further demonstrate the utility of PC-Relate in applications to three ancestrally diverse samples that vary in both size and genealogical complexity.  相似文献   

9.
For captive breeding to play a significant role in conservation, ex situ populations must be scientifically managed to meet objective goals for retaining representative genetic variation. Imperfect genealogical information requires fundamental assumptions to be made that may bias downstream measures of genetic importance, upon which management decisions are based. The impacts of such assumptions are most pronounced within breeding programmes characterized by a high proportion of individuals of unknown ancestry, as exemplified by the large captive population of the St Vincent parrot (Amazona guildingii). The degree to which microsatellite-based estimates of relatedness may improve upon the assumptions of conventional pedigree-based management was investigated using genotypic data collected at eight microsatellite loci and two marker-based relatedness estimators. The measure, rxyLR, was found to explain the highest amount of variation in true relatedness. Integration of pairwise estimates of founder relatedness with studbook data transformed current understanding of the relatedness structure of the A. guildingii population from two subgroups characterized by a high and low degree of relatedness, respectively, to a situation where all 72 individuals are prioritized for breeding according to their estimated mean kinships. Furthermore, the discovery of opposing, directional bias exhibited by rxyLR and rxyQG in assigning dyads to a given relationship category suggests that an approach that utilizes a combination of pairwise relatedness estimators may provide the most genetic information for balancing the dual considerations of maximizing gene diversity and minimizing inbreeding in developing breeding recommendations.  相似文献   

10.
The amount of genetic diversity in a population is determined by demographic and selection events in its history. Human populations which exhibit greatly reduced overall genetic diversity, presumably resulting from severe bottlenecks or founder events, are particularly interesting, not least because of their potential to serve as valuable resources for health studies. Here, we present an unexpected case, the human population of Nias Island in Indonesia, that exhibits severely reduced Y chromosome (non-recombining portion of the Y chromosome [NRY]) and to a lesser extent also reduced mitochondrial DNA (mtDNA) diversity as compared with most other populations from the Asia/Oceania region. Our genetic data, collected from more than 400 individuals from across the island, suggest a strong previously undetected bottleneck or founder event in the human population history of Nias, more pronounced for males than for females, followed by subsequent genetic isolation. Our findings are unexpected given the island's geographic proximity to the genetically highly diverse Southeast Asian world, as well as our previous knowledge about the human history of Nias. Furthermore, all NRY and virtually all mtDNA haplogroups observed in Nias can be attributed to the Austronesian expansion, in line with linguistic data, and in contrast with archaeological evidence for a pre-Austronesian occupation of Nias that, as we show here, left no significant genetic footprints in the contemporary population. Our work underlines the importance of human genetic diversity studies not only for a better understanding of human population history but also because of the potential relevance for genetic disease-mapping studies.  相似文献   

11.
International yield trials are assembled by CIMMYT to disseminate promising wheat breeding materials worldwide. To assess the genomic structure and linkage disequilibrium (LD) within this germplasm, wheat lines disseminated during 25 years of the Elite Spring Wheat Yield Trial (ESWYT) targeted for irrigated environments of the world were genotyped with the high-throughput Diversity Arrays Technology (DArT) marker system. Analyses of population structure assigned the ESWYT germplasm into five major sub-populations that are shaped by prominent CIMMYT wheat lines and their descendants. Based on genetic distance, we concluded that a constant level of genetic diversity was maintained over the years of ESWYT dissemination. Genetic distance between the individual ESWYT lines significantly increased when the ESWYT were grouped according to the differences in years of ESWYT dissemination, suggesting a systematic change in allele frequencies over time, most probably due to breeding and directional selection. By means of multiple regression analyses, 78 markers displaying a significant change in allele frequency across years were identified and interpreted as an indicator for constant selection. The markers identified were partly associated with grain yield, leaf, stem, and yellow rust and point to key genomic regions for further investigation. Large numbers of adjacent DArT marker pairs showed significant LD across the ESWYT population and within each of the five sub-populations identified. Sub-population differentiation measured by the fixation index and average genetic distance were highly correlated with LD levels, suggesting that the sub-populations themselves explain much of the LD.  相似文献   

12.
Information about the extent and genomic distribution of linkage disequilibrium (LD) is of fundamental importance for association mapping. The main objectives of this study were to (1) investigate genetic diversity within germplasm groups of elite European maize (Zea mays L.) inbred lines, (2) examine the population structure of elite European maize germplasm, and (3) determine the extent and genomic distribution of LD between pairs of simple sequence repeat (SSR) markers. We examined genetic diversity and LD in a cross section of European and US elite breeding material comprising 147 inbred lines genotyped with 100 SSR markers. For gene diversity within each group, significant (P<0.05) differences existed among the groups. The LD was significant (P<0.05) for 49% of the SSR marker pairs in the 80 flint lines and for 56% of the SSR marker pairs in the 57 dent lines. The ratio of linked to unlinked loci in LD was 1.1 for both germplasm groups. The high incidence of LD suggests that the extent of LD between SSR markers should allow the detection of marker-phenotype associations in a genome scan. However, our results also indicate that a high proportion of the observed LD is generated by forces, such as relatedness, population stratification, and genetic drift, which cause a high risk of detecting false positives in association mapping.  相似文献   

13.
The application of hypervariable minisatellite genomic families to the reconstruction of population genetic structure holds great promise in describing the demographic history and future prospects of free-ranging populations. This potential has not yet been realized due to unforeseen empirical constraints associated with the use of heterologous species probes, to theoretical limitations on the power of the procedure to track genic heterozygosity and kinship, and to the absence of extensive field studies to test genetic predictions. We combine here the technical development of feline-specific VNTR (variable number tandem repeat) families of genetic loci with the long-term demographic and behavioral observations of lion populations of the Serengeti ecosystem in East Africa. Minisatellite variation was used to quantify the extent of genetic variation in several populations that differed in their natural history and levels of inbreeding. Definitive parentage, both maternal and paternal, was assessed for 78 cubs born in 11 lion prides, permitting the assessment of precise genealogical relationships among some 200 lions. The extent of DNA restriction fragment sharing between lions was empirically calibrated with the coefficient of relatedness, r, in two different populations that had distinct demographic histories. The results suggest that reliable estimates of relative genetic diversity, of parentage, and of individual relatedness can be achieved in free-ranging populations, provided the minisatellite family is calibrated in established pedigrees for the species.  相似文献   

14.
Correct annotation of the genetic relationships between samples is essential for population genomic studies, which could be biased by errors or omissions. To this end, we used identity-by-state (IBS) and identity-by-descent (IBD) methods to assess genetic relatedness of individuals within HapMap phase III data. We analyzed data from 1,397 individuals across 11 ethnic populations. Our results support previous studies (Pemberton et al., 2010; Kyriazopoulou-Panagiotopoulou et al., 2011) assessing unknown relatedness present within this population. Additionally, we present evidence for 1,657 novel pairwise relationships across 9 populations. Surprisingly, significant Cotterman''s coefficients of relatedness K1 (IBD1) values were detected between pairs of known parents. Furthermore, significant K2 (IBD2) values were detected in 32 previously annotated parent-child relationships. Consistent with a hypothesis of inbreeding, regions of homozygosity (ROH) were identified in the offspring of related parents, of which a subset overlapped those reported in previous studies (Gibson et al. 2010; Johnson et al. 2011). In total, we inferred 28 inbred individuals with ROH that overlapped areas of relatedness between the parents and/or IBD2 sharing at a different genomic locus between a child and a parent. Finally, 8 previously annotated parent-child relationships had unexpected K0 (IBD0) values (resulting from a chromosomal abnormality or genotype error), and 10 previously annotated second-degree relationships along with 38 other novel pairwise relationships had unexpected IBD2 (indicating two separate paths of recent ancestry). These newly described types of relatedness may impact the outcome of previous studies and should inform the design of future studies relying on the HapMap Phase III resource.  相似文献   

15.
The Saguenay-Lac St-Jean population of Quebec is relatively isolated and has genealogical records dating to the 17th-century French founders. In 120 extended families with at least one sib pair affected with early-onset hypertension and/or dyslipidemia, we analyzed the genetic determinants of hypertension and related cardiovascular and metabolic conditions. Variance-components linkage analysis revealed 46 loci after 100,000 permutations. The most prominent clusters of overlapping quantitative-trait loci were on chromosomes 1 and 3, a finding supported by principal-components and bivariate analyses. These genetic determinants were further tested by classifying families by use of LOD score density analysis for each measured phenotype at every 5 cM. Our study showed the founder effect over several generations and classes of living individuals. This quantitative genealogical approach supports the notion of the ancestral causality of traits uniquely present and inherited in distinct family classes. With the founder effect, traits determined within population subsets are measurably and quantitatively transmitted through generational lineage, with a precise component contributing to phenotypic variance. These methods should accelerate the uncovering of causal haplotypes in complex diseases such as hypertension and metabolic syndrome.  相似文献   

16.
In contrast to large GWA studies based on thousands of individuals and large meta-analyses combining GWAS results, we analyzed a small case/control sample for uric acid nephrolithiasis. Our cohort of closely related individuals is derived from a small, genetically isolated village in Sardinia, with well-characterized genealogical data linking the extant population up to the 16(th) century. It is expected that the number of risk alleles involved in complex disorders is smaller in isolated founder populations than in more diverse populations, and the power to detect association with complex traits may be increased when related, homogeneous affected individuals are selected, as they are more likely to be enriched with and share specific risk variants than are unrelated, affected individuals from the general population. When related individuals are included in an association study, correlations among relatives must be accurately taken into account to ensure validity of the results. A recently proposed association method uses an empirical genotypic covariance matrix estimated from genome-screen data to allow for additional population structure and cryptic relatedness that may not be captured by the genealogical data. We apply the method to our data, and we also investigate the properties of the method, as well as other association methods, in our highly inbred population, as previous applications were to outbred samples. The more promising regions identified in our initial study in the genetic isolate were then further investigated in an independent sample collected from the Italian population. Among the loci that showed association in this study, we observed evidence of a possible involvement of the region encompassing the gene LRRC16A, already associated to serum uric acid levels in a large meta-analysis of 14 GWAS, suggesting that this locus might lead a pathway for uric acid metabolism that may be involved in gout as well as in nephrolithiasis.  相似文献   

17.
Modern genomics approaches rely on the availability of high-throughput and high-density genotyping platforms. A major breakthrough in wheat genotyping was the development of an SNP array. In this study, we used a diverse panel of 172 elite European winter wheat lines to evaluate the utility of the SNP array for genomic analyses in wheat germplasm derived from breeding programs. We investigated population structure and genetic relatedness and found that the results obtained with SNP and SSR markers differ. This suggests that additional research is required to determine the optimum approach for the investigation of population structure and kinship. Our analysis of linkage disequilibrium (LD) showed that LD decays within approximately 5–10 cM. Moreover, we found that LD is variable along chromosomes. Our results suggest that the number of SNPs needs to be increased further to obtain a higher coverage of the chromosomes. Taken together, SNPs can be a valuable tool for genomics approaches and for a knowledge-based improvement of wheat.  相似文献   

18.
Understanding the biological processes involved in genetic differentiation and divergence between populations within species is a pivotal aim in evolutionary biology. One particular phenomenon that requires clarification is the maintenance of genetic barriers despite the high potential for gene flow in the marine environment. Such patterns have been attributed to limited dispersal or local adaptation, and to a lesser extent to the demographic history of the species. The corkwing wrasse (Symphodus melops) is an example of a marine fish species where regions of particular strong divergence are observed. One such genetic break occurred at a surprisingly small spatial scale (FST ~0.1), over a short coastline (<60 km) in the North Sea‐Skagerrak transition area in southwestern Norway. Here, we investigate the observed divergence and purported reproductive isolation using genome resequencing. Our results suggest that historical events during the post‐glacial recolonization route can explain the present population structure of the corkwing wrasse in the northeast Atlantic. While the divergence across the break is strong, we detected ongoing gene flow between populations over the break suggesting recent contact or negative selection against hybrids. Moreover, we found few outlier loci and no clear genomic regions potentially being under selection. We concluded that neutral processes and random genetic drift e.g., due to founder events during colonization have shaped the population structure in this species in Northern Europe. Our findings underline the need to take into account the demographic process in studies of divergence processes.  相似文献   

19.
Awareness of the genealogical relationships between founder animals in captive breeding programs is essential for the selection of mating pairs that maintain genetic diversity. If captive founder relationships are unknown they can be inferred using genetic data from wild populations. Here, we report the results of such an analysis for six Cyclura pinguis (Sauria: Iguanidae) acquired as adults in 1999 by the San Diego Zoo Institute for Conservation Research to begin a captive breeding program for this critically endangered species. The six founder animals were reportedly hatched in captivity from eggs collected on Anegada in 1985. No records exist, however, as to where on Anegada the eggs were collected or from how many nests they originated. To assist determination of genealogical relationships, we genotyped the six captive founders, their first six offspring, and 33 wild adult iguanas from Anegada at 23 informative microsatellite loci. With these data, we estimated allele frequencies among the wild samples and then estimated the relatedness of the captive population. Using likelihood inference, we determined that three closely related pairs exist among the six captive founders and that each pair is not closely related to the other two. In addition, we were able to assign parentage for all six of the founders’ offspring tested, one of which had been previously misdiagnosed. Using the assigned parentage and inferred relatedness of the six founders, we calculated mean kinship for each of the six founders and their five living offspring. Finally, based on the allelic diversity of the wild iguanas sampled, we conclude that the C. pinguis population on Anegada is not excessively inbred; however, further investigation is warranted.  相似文献   

20.
Demographic history plays a major role in shaping the distribution of genomic variation. Yet the interaction between different demographic forces and their effects in the genomes is not fully resolved in human populations. Here, we focus on the Roma population, the largest transnational ethnic minority in Europe. They have a South Asian origin and their demographic history is characterized by recent dispersals, multiple founder events, and extensive gene flow from non-Roma groups. Through the analyses of new high-coverage whole exome sequences and genome-wide array data for 89 Iberian Roma individuals together with forward simulations, we show that founder effects have reduced their genetic diversity and proportion of rare variants, gene flow has counteracted the increase in mutational load, runs of homozygosity show ancestry-specific patterns of accumulation of deleterious homozygotes, and selection signals primarily derive from preadmixture adaptation in the Roma population sources. The present study shows how two demographic forces, bottlenecks and admixture, act in opposite directions and have long-term balancing effects on the Roma genomes. Understanding how demography and gene flow shape the genome of an admixed population provides an opportunity to elucidate how genomic variation is modeled in human populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号