首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The pheromone-modulated upwind flight ofLymantria dispar males responding to different pheromone plume structures and visual stimuli designed to mimic trees was video recorded in a forest. Males flying upwind along pheromone plumes of similar structure generated tracks that were similar in appearance and quantitatively similar in almost all parameters measured, regardless of the experimentally manipulated visual stimuli associated with the pheromone source. Net velocities, ground speeds, and airspeeds of males flying in point-source plumes were slower than those of males flying in the wider, more diffuse plumes issuing from a cylindrical baffle. The mean track angle of males flying in plumes issuing from a point source was greater (oriented more across the wind) than that of males flying in plumes issuing from a transparent cylindrical baffle. Males flying in point-source plumes also turned more frequently and had narrower tracks overall than males responding to plumes from a cylindrical baffle. These data suggest thatL. dispar males orienting to pheromone sources (i.e., calling females) associated with visible vertical cylinders (i.e., trees) use predominantly olfactory cues to locate the source and that the structure of the pheromone plume markedly affects the flight orientation and the resultant track.  相似文献   

2.
The upwind zigzag flights of male gypsy moths (Lymantria dispar L.; Lepidoptera: Lymantriidae) along narrow, ribbon‐like and wide, turbulent plumes of pheromone were examined in a wind tunnel at light levels of 450 and 4 lux. Under all conditions tested males flew upwind zigzag paths. In 450 lux, males flying along turbulent plumes had the highest ground speeds and the widest crosswind excursions between counterturns, compared to slow flight and a narrow zigzag of males along a ribbon plume. In a turbulent plume, males flew more slowly and had narrower zigzags in 4 than in 450 lux. Across most treatments of plume structure and light level, the rate of transverse image flow and the frequency of counterturning remained relatively constant. The effects of light levels on orientation are not readily reconcilable with a model in which moths in low light levels would head more towards crosswind, thereby enhancing the rate of transverse image flow and the perception of wind‐induced drift.  相似文献   

3.
ABSTRACT. In a wind-field experimentally shifted in direction by 35d?, flying male Grapholita molesta (Busck) zigzagging upwind either maintained contact with a pheromone plume and followed it across during the shift or lost it and commenced casting at c. 90d? across the shifting windline to locate it eventually in its new position. Males accomplished both of these results by integrating the previously described systems of optomotor anemotaxis and self-steered counterturning, but with faster reaction-times to pheromone on and off than heretofore calculated for this species. We found no evidence that males following the plume across used chemotaxis as proposed for another species, Rather, the sawtoothed-shaped tracks were a result of the anemotactic and counterturning systems responding rapidly and reiteratively to each loss and gain of pheromone along the plume in the shifting wind. The response to an increase or decrease in pheromone concentration by males was to change their course angle to more upwind or more crosswind, respectively, on the very first reversal (within c. 0.15 s) after the concentration changed. Because males adjusted their airspeeds more slowly to changes in concentration, the groundspeeds along the more upwind-orientated legs were lower than those along cross-wind legs, contributing to the sawtoothed shape of tracks of plume-followers. The self-steered counterturning programme also reacted quickly to concentration changes, the reversal intervals tending to be shorter following each contact with pheromone than after each excursion into cleaner wind. Following casting after losing the plume, males relocating the pheromone plume exhibited an upwind ‘surge’ of narrow zigzagging flight because on the first leg in the plume they steered a course more directly upwind than on the previous leg and increased the frequency of counterturning to its highest value while maintaining the relatively high airspeed acquired while casting.  相似文献   

4.
The interception of a pheromone filament induces flying moths to surge briefly nearly straight upwind; in the absence of pheromone moths cease upwind progress and zigzag crosswind. We tested males of the almond moth, Cadra cautella (Lepidoptera, Pyralidae), in a low-turbulence wind tunnel in wind velocities of 20, 40 and 80 cm s−1. A mechanical pulse generator was set to produce plumes either with same pheromone pulse frequency (pulse generation frequency of 2.9 Hz, interpulse distances from 7 cm to 28 cm) or plumes with same interpulse distance across the three wind velocities (interpulse distance of 14 ± 2 cm, pulse generation frequency of 1.7–5.0 Hz). In plumes of similar pulse frequency, the faster the speed of the wind the slower the ground speed of flight. However, in plumes of similar interpulse distance, ground speed remained relatively constant independent of the wind speed. A `realized' frequency of pulse interception for males flying along the various combinations of pulse frequencies and wind velocities was calculated using the males' average airspeed and the spatial distribution of pheromone pulses in the plume. Realized frequency of pulse interception ranged from 1.3- to 3.0-fold higher than the frequency of pulse generation. The flight tracks of males reflected the regime of realized pulse interception. These results suggest that upwind flight orientation of male C. cautella to pheromone in different wind velocities is determined by the flux of filament encounter. Accepted: 3 September 1997  相似文献   

5.
Abstract. The effects of pheromone plume structure and its concentration on the pheromone-mediated flight of male Cadra cautella (Lepidoptera: Phycitinae) were investigated in a laminar-flow wind tunnel. When two C. caurella males flew simultaneously along a ribbon plume of mixed smoke and pheromone, their inflight behaviour was dependent on the instantaneous structure of the plume they encountered. When a male intercepted an intact ribbon filament, he sustained a crosswind course, whereas when he intercepted a turbulent filament (created by an upwind male fragmenting the ribbon plume), he adopted a flight course more due upwind. These results indicate that C. cautella males altered their in-flight manoeuvres in response to instantaneous changes in the fine structure of the pheromone plume. We also demonstrated that differences in the fine structure of the plume had more influence on the flight pattern of C. cautella males than a 1000-fold range in pheromone dose. The size of the plume was increased by adding wind deflectors upwind of the pheromone source, independent of source dosage, males following ribbon plumes flew slow zigzag tracks, whereas males following large, turbulent plumes flew directly to the source in fast, straight tracks with less counterturning.  相似文献   

6.
Male Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) flying in a pheromone plume respond to the loss of pheromone when they fly into a large pocket of clean air by going into crosswind casting flight in a mean of 0.48 s; 0.62 s after re‐contacting pheromone presented as a single pulse, they surge upwind in a kind of narrow zigzagging flight. After 0.36 s of surging, they lapse into casting flight once again in the clean air following the pulse. The addition of a known behavioural antagonist (Z)‐11‐hexadecenyl acetate (Z11–16:Ac), to the pheromone significantly increases the mean latency of the response to a single pulse to 0.85 s. No other aspects of the surge were significantly changed by the presence of antagonist in the single pulse of pheromone. Thus, unlike males of the related species, Heliothis virescens, which show significant changes in track and course angles when antagonist is present in single pulses, only an increased latency of response to a filament containing antagonist occurred in H. zea males. The increased latency could act cumulatively when the male is exposed rapidly and repeatedly to filaments in a natural plume and explain the profound arrestment effect of the antagonist in such plumes. The latencies to casting and surging in response to a pulse of pheromone blend are longer than those of the smaller species, H. virescens, and may be due to size‐related differences in manoeuverability of H. zea vs. H. virescens.  相似文献   

7.
Abstract Airborne pheromone plumes in wind comprise filaments of odour interspersed with gaps of clean air. When flying moths intercept a filament, they have a tendency to surge upwind momentarily, and then fly crosswind until another filament is intercepted. Thus, the moment-to-moment contact with pheromone mediates the shape of a flight track along the plume. Within some range of favourable interception rates, flight tracks become straighter and are headed more due upwind. However, as the rate of interception increases, there comes a point at which the moth should not be able to discern discreet filaments but, rather, should perceive a 'fused signal'. At the extreme, homogeneous clouds of pheromone inhibit upwind progress by representative tortricids. In a wind tunnel, Cadra cautella (Walker) (Lepidoptera: Pyralidae) were presented with 10 ms pulses of pheromone at a repetition rate of 5, 10, 17 and 25/s and a continuous, internally turbulent plume. Pulse size and concentrations were verified with a miniature photoionization detector sampling surrogate odour, propylene, at 100 Hz. Male moths maintain upwind progress even at plumes of 25 filaments/s. Furthermore, moths exhibited greater velocities and headings more due upwind at 17 and 25 Hz than at the lower frequencies or with the continuous plume. It is hypothesized that either C. cautella possesses a versatile sensory system that allows the resolution of these rapidly pulsed pheromone plumes, or that this species does not require a 'flickering' signal to fly upwind.  相似文献   

8.
Abstract. Females of the specialist parasitoid, Microplitis croceipes (Cresson) (Hymenoptera: Braconidae), were released in a wind tunnel into host-odour plumes dispersed by winds of three velocities and winds whose speed was changed while the wasps were engaged in upwind flight. In steady winds of 61, 122 and 183 cms--1, wasps maintained similar 'preferred' ground speeds by adjusting their airspeed, while turning to a lesser degree as wind velocity increased. In winds of changing velocity (either increasing or decreasing within a 60–100 cm s-1 range), wasps lowered their rate of upwind progress, leading to more tortuous tracks. During changing wind speeds longitudinal image flow decreased. Wasps flying in host-odour plumes 10 cm and 20 cm above the flight tunnel floor in a 122 cm s-1 wind had similar ground speeds; thus their rate of ventral visual image flow varied two-fold. M.croceipes may 'aim' upwind by comparing how changes in the course angle vary with the direction of visual image flow. During changing wind velocities the relationship between changes in visual and flight muscle generated torque is ambiguous. Under these conditions most wasps cast, a manoeuvre characterized by wide lateral excursions across the wind without upwind progress. Once wind speed stabilizes, flight straightens out and upwind flight resumes.  相似文献   

9.
Male moths locate conspecific females by pheromone‐induced upwind flight maintained by detecting a visual flow, termed optomotor anemotaxis. Their behavioural pattern is characterized by an upwind surge in response to a pheromone stimulus and crosswind casting after odour loss, which is considered to be reset and restarted on receipt of another pheromone pulse. However, pheromone‐stimulated males of the potato tuberworm moth Phthorimaea operculella exhibit a series of short and straight intermittent flights, or hops, when moving upwind. It is unclear whether they navigate by employing the same behavioural pattern and wind detection mechanism as that used by flying moths. To analyze odour‐modulated anemotaxis in male potato tuberworm moths, a flat wind tunnel is constructed to give regular odour stimuli to an insect regardless of its location. Moths are subjected to pheromone pulses of different frequencies to test whether they show a behavioural pattern that is reset and restarted by a pheromone pulse. Moths on the ground are also subjected to crosswind shear to examine their detection of wind direction. Path analyses reveal that males surge upwind when they receive a pheromone pulse and exhibit casting by successive hops when they lose odour. This behavioural pattern appears to be similar to that of flying moths. When the direction of the airflow is switched orthogonally, males adjust their course angle accordingly when they are on the ground. It is suggested that, instead of optomotor anemotaxis, this ‘aim‐then‐shoot’ system aids the detection of wind direction, possibly by mechanosensory means.  相似文献   

10.
Abstract.  Two-day-old male cowpea weevils, Callosobruchus maculatus, fly upwind to a point source of female sex pheromone at three wind speeds. All beetles initiating flight along the pheromone plume make contact with the pheromone source. Analysis of digitized flight tracks indicates that C. maculatus males respond similarly to moths tested at several wind speeds. Beetles' mean net upwind speeds and speeds along their track are similar ( P  > 0.05) across wind speeds, whereas airspeeds increase ( P <  0.01) with increasing wind speed. Beetles adjust their course angles to fly more directly upwind in higher wind speeds, whereas track angles are almost identical at each wind speed. The zigzag flight paths are generally narrow compared with most moth flight tracks and interturn distances are similar ( P  > 0.05) at the wind speeds employed. The frequency of these counterturns across the wind line is almost constant regardless of wind speed, and there is little variation between individuals. The upwind flight tracks are more directly upwind than those typically seen for male moths flying upwind toward sex pheromone sources. Male moths typically produce a bimodal distribution of track angles to the left and right of the windline, whereas C. maculatus males' track angles are centred about 0°. Preliminary examination of two other beetle species indicates that they fly upwind in a similar fashion.  相似文献   

11.
ABSTRACT. The flight pattern of mated female navel orangeworm moths, Amyelois transitella (Walker), responding to odour from potential larval hosts is zigzagging upwind flight. However, at times these moths are capable of flying nearly directly upwind towards the odour source (track angles near 0). This response indicates that these females are capable of very accurate anemotactic control of their heading or course angle, since small angular errors in this measure would translate into larger deviations from direct upwind flight. Males of this species exhibit flight patterns similar to those of females, including track angles clustered about 0 when flying upwind to a source of the female-produced pheromone, but under these experimental conditions they flew with a higher average airspeed than the females. When females lose contact with an odour plume they initiate a well-defined programme of cross-wind counterturning or casting, which may normally increase their chances of retrieving contact with that plume when the wind direction shifts. The resultant track angles of females increase significantly by 0.8 s after plume loss, indicating that the female has initiated changes in both her course angle and airspeed. By 1 s after plume loss the females' track angles are no longer unimodally distributed about 0, but are bimodally distributed about -90 and +90. Males responded more rapidly to the loss of a pheromone plume, demonstrating a significant change in track angle 0.4 s after plume loss. Overall, female and male A.transitella exhibited remarkably similar anemotactic flight manoeuvres during upwind flight to odour sources as well as after plume loss.  相似文献   

12.
Abstract. The effects of plume intermittency and volume on behavioural and flight responses to pheromone of male Cadra cautella (Walker) (Lepidoptera: Phycitinae) were investigated in a pulling wind tunnel. The fine-scale structure of turbulent pheromone plumes was mimicked and manipulated using a pulser device that generated continuous ribbon plumes or intermittent plumes with defined pulse frequency and volume. As pulse frequency increased from 0.6 to 5 Hz and injected volume increased from 0.5 to 5 mls-1, males flew progressively higher air and ground speeds, turned less frequently, and steered smaller course angles, resulting in straighter flight tracks. The faster the frequency of pulses and the greater the volume of the plume, the higher the proportion of males responding, the shorter their latencies, and the less time spent in the behaviour. Flight tracks of male C.cautella to point sources of pheromone depend on the frequency of filaments encountered.  相似文献   

13.
Abstract. In the field over short grass, pheromone-stimulated oriental fruit moth males, Grapholita molesta (Busck), flying under high windspeeds tended to steer courses more into the wind and to increase their airspeeds compared with those flying in low windspeeds.Thus, optomotor anemotaxis enabled the males to steer relatively consistent upwind track angles and to maintain an upwind progress of between c. 50–100 cm/s despite variable wind velocities.Zigzagging flight tracks were observed at both 10 m and 3 m from the source, as were tracks with no apparent zigzags.Transitions from casting to upwind flight or vice-versa were observed.The durations of the intervals between reversals during both upwind zigzagging flight and casting were consistent with those observed in previous wind-tunnel experiments.The control of altitude was more precise during upwind zigzagging flight than during casting.In general, the side-to-side deviations in the tracks were greater than the up-and-down deviations, with both the side-to-side and vertical distances and their ratios being consistent with previous wind-tunnel studies of pheromone-mediated flight.One difference between the field and laboratory flight tracks was that males in the field exhibited much higher airspeeds than in the wind tunnel.Males occasionally were observed to progress downwind faster than the wind itself, and further analysis showed that they were steering a downwind course in pheromone-free air following exposure to pheromone, which is the first time this has been recorded in moths.We propose that such downwind flight may aid in the relocation of a pheromone plume that has been lost due to a wind-shift, by enabling the moth to catch up to the pheromone as it recedes straight downwind away from the source.  相似文献   

14.
1)  Male Heliothis virescens moths flew upwind to pulsed pheromone plumes. Upon truncation of the pulsed plume males flew into clean air, turning their tracks crosswind (> 60° relative to directly upwind direction at 0°) within an average of 0.27 s, and were casting, perpendicular to the wind-line (90°), within 0.43 s.
2)  The characteristic casting flight in clean air consisted of left-right crosswind reversals, continuing for many seconds without further pheromonal stimulation. Males intercepting a single strand of pheromone during casting flight responded by surging upwind (track angles < 60°).=" the=" phasic=" surge=" lasted=" only=" 0.38=" s=" before=" reverting=" to=" crosswind=" flight=" (="> 60°).
3)  Average templates of responses in two and three dimensions were created. Males controlled their vertical deviations very tightly when in contact with pheromone but upon entering clean air, lateral and vertical excursions became much greater.
4)  Males failed to sustain upwind flight to repetitively pulsed plumes generated at < 4=" filaments/s.=" at=" the=" threshold=" frequency=" of=" 4=" pulses/s=" we=" show=" that=" upwind=" flights=" were=" composed=" of=" reiterated=" surges=" followed=" by=" crosswind=" casting.=" as=" the=" pulse=" frequency=" increased,=" the=" tracks=" became=" straighter=" and=" the=" single=" filament=" cast-surge-cast=" template=" could=" be=" viewed=" only=" sporadically=" when,=" for=" example,=" a=" male=" apparently=" failed=" to=" intercept=" filaments.=">
  相似文献   

15.
1. To maximize the probability of rapid contact with a female's pheromone plume, the trajectories of male foraging flights might be expected to be directed with respect to wind flow and also to be energetically efficient. 2. Flights directed either upwind, downwind, or crosswind have been proposed as optimal strategies for rapid and/or energetically efficient plume contact. Other possible strategies are random and Lévy walks, which have trajectories and turn frequencies that are not dictated by the direction of wind flow. 3. The planar flight paths of males of the day-active moth Virbia lamae were recorded during the customary time of its sexual activity. 4. We found no directional preference in these foraging flights with respect to the direction of contemporaneous wind flow, but, because crosswind encompasses twice the possible orientations of either upwind or downwind, a random orientation is in effect a de facto crosswind strategy. 5. A crosswind preference should be favoured when the plume extends farther downwind than crosswind, and this strategy is realized by V. lamae males by a random orientation of their trajectories with respect to current wind direction.  相似文献   

16.
Odor-modulated upwind flight of the sphinx moth,Manduca sexta L.   总被引:1,自引:0,他引:1  
1. Male and female Manduca sexta flew upwind in response to the odor of female sex-pheromone gland extract or fresh tobacco leaf respectively, and generated very similar zigzagging tracks along the odor plume. 2. After loss of odor during flight, males and females alike: (1) first flew slower and steered their flight more across the wind, then (2) stopped moving upwind, and finally (3) regressed downwind. 3. Males flying upwind in a pheromone plume in wind of different velocities maintained their ground speed near a relatively constant 'preferred' value by increasing their air speed as the velocity of the wind increased, and also maintained the average angle of their resultant flight tracks with respect to the wind at a preferred value by steering a course more precisely due upwind. 4. The inter-turn duration and turn rate, two measures of the temporal aspects of the flight track, were maintained, on average, with remarkable consistency across all wind velocities and in both sexes. The inter-turn durations also decreased significantly as moths approached the odor source, suggesting modulation of the temporal pattern of turning by some feature of the odor plume. This temporal regularity of turning appears to be one of the most stereotyped features of odor-modulated flight in M. sexta.  相似文献   

17.
Abstract. The effects of pheromone concentration and ambient temperature on male gypsy moth, Lymantria dispar (L.) (Lepidoptera), flight responses to pheromone were investigated in a wind tunnel. As the pheromone dose increased from 10 ng to 1000 ng, males flew at progressively slower airspeeds and ground speeds, and reduced their wingbeat frequencies. Furthermore, the moths steered significantly smaller course angles as the pheromone concentration increased, indicating that they were adopting a more upwind heading. The overall width of the flight tracks also decreased when males flew in more concentrated pheromone plumes. Estimation of plume dimensions using a male wing-fanning assay showed that as pheromone dosage increased, the resultant active spaces became wider, indicating that an inverse relationship existed between the dimensions of the time-averaged plume and the width of track reversals and that most turns were initiated within the plume. When males were flown at cool (20°C) and warm (26°C) ambient temperatures but to equivalent pheromone emission rates, they exhibited higher airspeeds and ground speeds at the higher temperature but steered larger course angles. Track widths, and length of track legs were, however, similar at the two temperatures. The mean turning frequency was nearly the same (c. 4 turns/s) across all the concentrations and temperatures tested even though the moths' thoracic temperature differed by 5°C when the ambient temperature was varied.  相似文献   

18.
Previous studies with Oriental Fruit Moth (OFM, Grapholita molesta) and Heliothis virescens males flying upwind along a pheromone plume showed that they increased their upwind flight speed as they flew higher above striped floor patterns and, for OFM, to a similar degree over dotted floor patterns. This response pattern has been demonstrated in another moth species, Epiphyas postvittana and in a beetle, Prostephanus truncatus. In all cases the role played by the change in angular size of the wind tunnel’s ventral floor pattern was not assessed. In the present study we specifically addressed this question with a systematic examination of moths’ flight control over different sizes of transverse stripes and dot patterns ranging down by halves from 5 to 0.625 cm and a blank white floor as a control, and showed that OFM males fly faster upwind and along their flight paths over floor patterns of decreasing size. Increased speeds over striped patterns were evident as stripe width decreased below 2.5 cm, whereas moths did not increase their flight speed over dot patterns until dot size had decreased to less than 1.25 cm. Another flight component that the moths can actively control, their course angles, was unchanged above both patterns, except for moths flying over 5 cm stripes. Turning frequency and interturn distances were mostly unchanged or offset each other, negating any effects on upwind progress. As in an earlier study examining flight speeds at three heights above floor patterns of three densities, the moths’ changes in speed appear to be exclusively affected by changes in their orthokinetic response to the size of the floor pattern objects.  相似文献   

19.
Male Cadra cautella were presented with five heterogeneous pheromone clouds (created from source doses of 0, 0.01, 1, 100, and 10 000 ng) with and without superimposed plumes of either clean air or sex pheromone in a wind tunnel. Moths provided with the lowest doses of background clouds without a superimposed plume did not fly upwind. Moths provided with higher doses of background clouds, with or without superimposed air plumes, increased their track, course, and drift angles (i.e., their zigzags headed more towards crosswind) with increased dose, but slowed their velocity. No differences in flight track parameters were observed for moths provided with a superimposed pheromone plume, regardless of the background cloud dose. Moreover, moths were able to locate the source of superimposed air plumes in the highest background dose, and of superimposed pheromone plumes in any background dose. The significance of these results is discussed in the context of mating disruption.  相似文献   

20.
Free-flying male gypsy moths (Lymantria dispar)head upwind in response to sex pheromone. Males typically fly in a zigzag path, with mean ground speeds modulated by pheromone concentration and ambient temperature, but not by wind speed. We studied the effect of male size on ground speeds and additional flight track parameters. Mean net ground speed along the wind line was fastest among large males and was slower in medium and small males. Similarly, mean airspeeds and ground speeds along the flight tracks increased from small to large males. Males from all three size classes steered similar mean course angles. Small males, however, had larger mean track angles than larger males, and mean drift angles were also larger for small males. Turning rates (frequency of turns across the wind line) and interturn distances (net crosswind displacement between turn apices) were not significantly different among the three size classes; however, large males had a trend toward a reduced mean turning rate and increased mean interturn distance. The steering of similar course angles by males from all three size classes and the higher airspeeds among larger males (the two variables males can actively control during free flight) suggest that changes in other flight parameters are a result primarily of increased ground speed among large males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号