首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the past decade, encouraging results have been obtained in extraction and analysis of proteins from formalin‐fixed, paraffin‐embedded (FFPE) tissues. However, 2‐D PAGE protein maps with satisfactory proteomic information and comparability to fresh tissues have never been described to date. In the present study, we report 2‐D PAGE separation and MS identification of full‐length proteins extracted from FFPE skeletal muscle tissue. The 2‐D protein profiles obtained from FFPE tissues could be matched to those achieved from frozen tissues replicates. Up to 250 spots were clearly detected in 2‐D maps of proteins from FFPE tissue following standard mass‐compatible silver staining. Protein spots from both FFPE and frozen tissue 2‐D gels were excised, subjected to in situ hydrolysis, and identified by MS analysis. Matched spots produced matched protein identifications. Moreover, 2‐D protein maps from FFPE tissues were successfully subjected to Western immunoblotting, producing comparable results to fresh‐frozen tissues. In conclusion, this study provides evidence that, when adequately extracted, full‐length proteins from FFPE tissues might be suitable to 2‐D PAGE‐MS analysis, allowing differential proteomic studies on the vast existing archives of healthy and pathological‐fixed tissues.  相似文献   

2.
Global mass spectrometry (MS) profiling and spectral count quantitation are used to identify unique or differentially expressed proteins and can help identify potential biomarkers. MS has rarely been conducted in retrospective studies, because historically, available samples for protein analyses were limited to formalin-fixed, paraffin-embedded (FFPE) archived tissue specimens. Reliable methods for obtaining proteomic profiles from FFPE samples are needed. Proteomic analysis of these samples has been confounded by formalin-induced protein cross-linking. The performance of extracted proteins in a liquid chromatography tandem MS format from FFPE samples and extracts from whole and laser capture microdissected (LCM) FFPE and frozen/optimal cutting temperature (OCT)–embedded matched control rat liver samples were compared. Extracts from FFPE and frozen/OCT–embedded livers from atorvastatin-treated rats were further compared to assess the performance of FFPE samples in identifying atorvastatin-regulated proteins. Comparable molecular mass representation was found in extracts from FFPE and OCT-frozen tissue sections, whereas protein yields were slightly less for the FFPE sample. The numbers of shared proteins identified indicated that robust proteomic representation from FFPE tissue and LCM did not negatively affect the number of identified proteins from either OCT-frozen or FFPE samples. Subcellular representation in FFPE samples was similar to OCT-frozen, with predominantly cytoplasmic proteins identified. Biologically relevant protein changes were detected in atorvastatin-treated FFPE liver samples, and selected atorvastatin-related proteins identified by MS were confirmed by Western blot analysis. These findings demonstrate that formalin fixation, paraffin processing, and LCM do not negatively impact protein quality and quantity as determined by MS and that FFPE samples are amenable to global proteomic analysis. (J Histochem Cytochem 57:849–860, 2009)  相似文献   

3.
4.
A number of reports have recently emerged with focus on extraction of proteins from formalin‐fixed paraffin‐embedded (FFPE) tissues for MS analysis; however, reproducibility and robustness as compared to flash frozen controls is generally overlooked. The goal of this study was to identify and validate a practical and highly robust approach for the proteomics analysis of FFPE tissues. FFPE and matched frozen pancreatic tissues obtained from mice (n = 8) were analyzed using 1D‐nanoLC‐MS(MS)2 following work up with commercially available kits. The chosen approach for FFPE tissues was found to be highly comparable to that of frozen. In addition, the total number of unique peptides identified between the two groups was highly similar, with 958 identified for FFPE and 1070 identified for frozen, with protein identifications that corresponded by approximately 80%. This approach was then applied to archived human FFPE pancreatic cancer specimens (n = 11) as compared to uninvolved tissues (n = 8), where 47 potential pancreatic ductal adenocarcinoma markers were identified as significantly increased, of which 28 were previously reported. Further, these proteins share strongly overlapping pathway associations to pancreatic cancer that include estrogen receptor α. Together, these data support the validation of an approach for the proteomic analysis of FFPE tissues that is straightforward and highly robust, which can also be effectively applied toward translational studies of disease.  相似文献   

5.
The decision to use 10% neutral buffered formalin fixed, paraffin embedded (FFPE) archival pathology material may be dictated by the cancer research question or analytical technique, or may be governed by national ethical, legal and social implications (ELSI), biobank, and sample availability and access policy. Biobanked samples of common tumors are likely to be available, but not all samples will be annotated with treatment and outcomes data and this may limit their application. Tumors that are rare or very small exist mostly in FFPE pathology archives. Pathology departments worldwide contain millions of FFPE archival samples, but there are challenges to availability. Pathology departments lack resources for retrieving materials for research or for having pathologists select precise areas in paraffin blocks, a critical quality control step. When samples must be sourced from several pathology departments, different fixation and tissue processing approaches create variability in quality. Researchers must decide what sample quality and quality tolerance fit their specific purpose and whether sample enrichment is required. Recent publications report variable success with techniques modified to examine all common species of molecular targets in FFPE samples. Rigorous quality management may be particularly important in sample preparation for next generation sequencing and for optimizing the quality of extracted proteins for proteomics studies. Unpredictable failures, including unpublished ones, likely are related to pre-analytical factors, unstable molecular targets, biological and clinical sampling factors associated with specific tissue types or suboptimal quality management of pathology archives. Reproducible results depend on adherence to pre-analytical phase standards for molecular in vitro diagnostic analyses for DNA, RNA and in particular, extracted proteins. With continuing adaptations of techniques for application to FFPE, the potential to acquire much larger numbers of FFPE samples and the greater convenience of using FFPE in assays for precision medicine, the choice of material in the future will become increasingly biased toward FFPE samples from pathology archives. Recognition that FFPE samples may harbor greater variation in quality than frozen samples for several reasons, including variations in fixation and tissue processing, requires that FFPE results be validated provided a cohort of frozen tissue samples is available.  相似文献   

6.
Prostate cancer is the most common cancer in males worldwide. Mass spectrometry-based targeted proteomics has demonstrated great potential in quantifying proteins from formalin-fixed paraffin-embedded (FFPE) and (fresh) frozen biopsy tissues. Here we provide a comprehensive tissue-specific spectral library for targeted proteomic analysis of prostate tissue samples. Benign and malignant FFPE prostate tissue samples were processed into peptide samples by pressure cycling technology (PCT)-assisted sample preparation, and fractionated with high-pH reversed phase liquid chromatography (RPLC). Based on data-dependent acquisition (DDA) MS analysis using a TripleTOF 6600, we built a library containing 108,533 precursors, 84,198 peptides and 9384 unique proteins (1% FDR). The applicability of the library was demonstrated in prostate specimens.  相似文献   

7.
In vitro chemical modifications in proteins, introduced during sample preparation, can complicate mass spectra and increase the potential for false-positive identifications. While several in vitro protein modifications have been described previously, additional types of such modifications may exist. Here, we report discovery of four types of in vitro protein modifications, identified by HPLC/MS/MS analysis and nonrestrictive protein sequence alignment by PTMap, an algorithm recently developed in our laboratory. These novel in vitro modifications included ethylation of aspartate and glutamate (+28 Da), esterification of aspartate and glutamate by glycerol (+74 Da), loss of 19 Da from lysine, and addition of 108 Da to cysteine. We confirmed that these modifications occurred in vitro and not in vivo in control experiments designed to avoid conditions likely to induce the modifications. We propose a plausible molecular mechanism for the -19 Da modification of lysine. Our study therefore conclusively identifies several novel in vitro protein modifications, suggests ways to avoid these modifications, and highlights the possibility of misidentification of peptides because of in vitro modifications.  相似文献   

8.
Hospital tissue repositories possess a vast and valuable supply of disease samples with matched retrospective clinical information. Detection and characterization of disease biomarkers in formalin-fixed paraffin-embedded (FFPE) tissues will greatly aid the understanding of the diseases mechanisms and help in the development of diagnostic and prognostic markers. In this study, the possibility of using full-length proteins extracted from clinically archived FFPE tissues in two-dimensional (2-D) gel-based proteomics was evaluated. The evaluation was done based on two types of tumor tissues (breast and prostate) and two extraction protocols. The comparison of the 2-D patterns of FFPE extracts obtained by two extraction protocols with the matching frozen tissue extracts showed that only 7–10 % of proteins from frozen tissues can be matched to proteins from FFPE tissues. Most of the spots in the 2-D FFPE’s maps had pl 4–6, while the percentages of proteins with pl above 6 were 3–5 times lower in comparison to the fresh/frozen tissue. Despite the three-fold lower number of the detected spots in FFPE maps compared to matched fresh/frozen maps, 67–78 % of protein spots in FFPE could not be matched to the corresponding spots in the fresh/frozen tissue maps indicating irreversible protein modifications. In conclusion, the inability to completely reverse the cross-linked complexes and overcome protein fragmentation with the present day FFPE extraction methods stands in the way of effective use of these samples in 2-D gel based proteomics studies.  相似文献   

9.
Archival formalin-fixed paraffin-embedded (FFPE) tissues are a powerful tool for examining the clinical course of diseases. These specimens represent an incredible mine of valuable clinical and biological information for proteomic investigation. MALDI-TOF imaging MS (MALDI-IMS) is a protein profiling technique which enables the direct sampling of histological section; however, the quality of molecular data are strongly influenced by the tissue preparation condition. In fact, in previous years most of the studies employing such a technological platform have been conducted using cryo-preserved tissues. We have developed an in vitro approach using "tissue surrogate" samples in order to explore different protein unlocking procedures which might enable a suitable recovery of polypeptides for MS analysis. The developed protocols have been compared both by MALDI-TOF MS and nLC-MS(E) analysis either on surrogate samples or on FFPE specimen from human breast cancer. The collected evidence has been applied for the preparation of FFPE tissue sections following MALDI-IMS analysis. Our results outline the possibility to obtain valuable peptide mass spectra profiles form FFPE preparations by applying a combined two steps procedure of heat induced antigen retrieval (HIAR) in presence of EDTA and on target trypsin hydrolysis. A multivariate statistical evaluation is presented and discussed according to molecular spatial distributions and tissue morphology.  相似文献   

10.
Clinically relevant formalin-fixed and paraffin-embedded (FFPE) tissues have not been widely used in neuroproteomic studies because many proteins are presumed to be degraded during tissue preservation. Recent improvements in proteomics technologies, from the 2D gel analysis of intact proteins to the "shotgun" quantification of peptides and the use of isobaric tags for absolute and relative quantification (iTRAQ) method, have made the analysis of FFPE tissues possible. In recent years, iTRAQ has been one of the main methods of choice for high throughput quantitative proteomics analysis, which enables simultaneous comparison of up to eight samples in one experiment. Our objective was to assess the relative merits of iTRAQ analysis of fresh frozen versus FFPE nervous tissues by comparing experimental autoimmune encephalomyelitis (EAE)-induced proteomic changes in FFPE rat spinal cords and frozen tissues. EAE-induced proteomic changes in FFPE tissues were positively correlated with those found in the frozen tissues, albeit with ~50% less proteome coverage. Subsequent validation of the enrichment of immunoproteasome (IP) activator 1 in EAE spinal cords led us to evaluate other proteasome and IP-specific proteins. We discovered that many IP-specific (as opposed to constitutive) proteasomal proteins were enriched in EAE rat spinal cords, and EAE-induced IP accumulation also occurred in the spinal cords of an independent mouse EAE model in a disability score-dependent manner. Therefore, we conclude that it is feasible to generate useful information from iTRAQ-based neuroproteomics analysis of archived FFPE tissues for studying neurological disease tissues.  相似文献   

11.
Formalin-fixed paraffin-embedded (FFPE) tissue specimens comprise a potentially valuable resource for retrospective biomarker discovery studies, and recent work indicates the feasibility of using shotgun proteomics to characterize FFPE tissue proteins. A critical question in the field is whether proteomes characterized in FFPE specimens are equivalent to proteomes in corresponding fresh or frozen tissue specimens. Here we compared shotgun proteomic analyses of frozen and FFPE specimens prepared from the same colon adenoma tissues. Following deparaffinization, rehydration, and tryptic digestion under mild conditions, FFPE specimens corresponding to 200 μg of protein yielded ∼400 confident protein identifications in a one-dimensional reverse phase liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The major difference between frozen and FFPE proteomes was a decrease in the proportions of lysine C-terminal to arginine C-terminal peptides observed, but these differences had little effect on the proteins identified. No covalent peptide modifications attributable to formaldehyde chemistry were detected by analyses of the MS/MS datasets, which suggests that undetected, cross-linked peptides comprise the major class of modifications in FFPE tissues. Fixation of tissue for up to 2 days in neutral buffered formalin did not adversely impact protein identifications. Analysis of archival colon adenoma FFPE specimens indicated equivalent numbers of MS/MS spectral counts and protein group identifications from specimens stored for 1, 3, 5, and 10 years. Combination of peptide isoelectric focusing-based separation with reverse phase LC-MS/MS identified 2554 protein groups in 600 ng of protein from frozen tissue and 2302 protein groups from FFPE tissue with at least two distinct peptide identifications per protein. Analysis of the combined frozen and FFPE data showed a 92% overlap in the protein groups identified. Comparison of gene ontology categories of identified proteins revealed no bias in protein identification based on subcellular localization. Although the status of posttranslational modifications was not examined in this study, archival samples displayed a modest increase in methionine oxidation, from ∼17% after one year of storage to ∼25% after 10 years. These data demonstrate the equivalence of proteome inventories obtained from FFPE and frozen tissue specimens and provide support for retrospective proteomic analysis of FFPE tissues for biomarker discovery.Formalin-fixed paraffin-embedded (FFPE)1 tissue samples are routinely prepared during the pathological characterization of clinical specimens and are abundantly available in pathology archives worldwide. The fixation process yields clinically relevant samples that can be stored at ambient temperature and are suitable for pathological examination by light microscopy even after years in storage. Given the wealth of clinical data associated with specimens collected over a span of decades, such as patient treatment regimens and outcomes, FFPE tissue represents a potentially valuable resource for biomarker discovery through retrospective analysis (1, 2).However, fixation of tissue in formalin leads to significant cross-linking among proteins and other biomolecules, rendering the samples incompatible with many biochemical analyses. Immunohistochemical (IHC) analysis of FFPE tissue has been conducted since the 1970s using either proteolysis or protein denaturants to expose antigenic regions of proteins (3, 4). Since the 1990s, detection of antigens in FFPE tissue has been improved through the development of so-called antigen retrieval techniques (5, 6). These methods involve application of heat in the presence of any of a variety of buffers resulting in the cleavage of methylene bridges formed during the course of fixation (2).Despite their utilization for IHC analysis, FFPE tissue samples have been largely overlooked in proteomics studies, due to the assumption that tissue fixation would make proteomic analysis intractable. Recent work appears to refute this notion. In 2005, Hood et al. (7) first described the successful application of shotgun proteome analysis to FFPE tissue. Using laser capture microdissected cells and an optimized extraction method, hundreds of proteins were identified from a cancerous prostate lesion and benign prostate hyperplasia, thus opening the door to comparative proteomic analyses of FFPE tissue. Moreover, the same study showed that the numbers and identities of proteins observed were remarkably similar when applying the method to frozen and FFPE mouse liver, thus lending support to the use of FFPE tissue in biomarker discovery studies. Since the initial demonstration of its feasibility, FFPE tissues from diverse origins including breast, liver, kidney, lymphoma, and bone successfully have been subjected to proteomic analyses (814).Although this work suggests the feasibility of biomarker discovery from FFPE tissue, most of these previous studies have been performed on small amounts of material with one-dimensional reverse phase liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. The use of multidimensional peptide separations can extend the dynamic range of the LC-MS/MS analyses to detect lower abundance proteins. Recently, the use of capillary isotachophoresis as the first dimension in a multidimensional peptide separation strategy for analyzing FFPE tissue was described (8). In this study, thousands of proteins were identified out of <4 μg of digest from FFPE human liver sections. However, the apparatus used was an in-house, custom-designed system, not readily accessible to other laboratories. In several of these studies, proteins identified by a single peptide were accepted as valid identifications. Use of single peptide-based identifications elevates the probability of false positive protein identifications, and these identifications often constitute the majority of protein identifications (15).The equivalence of fresh/frozen and FFPE tissue proteomes is a critical issue in evaluating the suitability of employing FFPE tissues for biomarker discovery by comparative proteomic analyses. Hood et al. (7) and Guo et al. (14) reported comparisons from analyses of paired fresh and frozen tissue specimens. Guo et al. (14) reported an apparent overlap of 83% in protein identifications between FFPE and frozen brain tissue specimens, whereas Hood et al. (7) did not report the degree of overlap, but found that FFPE mouse liver tissue yielded about 88% of the identifications determined for frozen mouse liver tissue. The majority of protein identifications in both studies were based on single peptide assignments. These investigations did not explicitly address the effect of formaldehyde-derived modifications on the inventories of identified peptides.An unexplored question with FFPE tissue specimens is the extent to which normal variability in fixation process and storage duration affect the proteomes observed. The duration of tissue fixation is not highly standardized and may vary from hours to several days. One of the most attractive features of FFPE specimens is the opportunity for retrospective biomarker discovery, but the effects of storage for many years on tissue proteomes remains unknown.Here, we address these questions through detailed comparative studies of the analysis of fresh frozen and FFPE tissues by LC-MS/MS-based shotgun proteomics. We used the same fresh tissue specimens to prepare both frozen and FFPE samples for paired comparisons. We evaluated conditions for tissue lysis and digestion and the effects of fixation time and storage duration on the number of protein IDs obtained during shotgun proteomic analysis of FFPE tissue. We also characterized the differences in peptides observed between fixed and frozen specimens in an effort to understand the effect of fixation from a practical biomarker discovery standpoint. Furthermore, we compared analyses of fresh frozen and FFPE colon adenoma tissue by multidimensional LC-MS/MS using gel-based isoelectric focusing of peptides (Fig. 1). The results demonstrate a remarkable overlap in the number and identities of proteins between the fixed and frozen tissue and indicate that variations in duration of fixation and storage have a minimal effect on protein inventories obtained by shotgun proteomic analysis. The data indicate essential equivalence between protein inventories obtained from fresh frozen and FFPE tissue specimens by shotgun proteomics and validate the use of FFPE tissue specimens for biomarker discovery.Open in a separate windowFig. 1.Strategy for multidimensional LC-MS/MS analysis of FFPE tissue.  相似文献   

12.
Detection of human genome copy number variation (CNV) is one of the most important analyses in diagnosing human malignancies. Genome CNV detection in formalin-fixed and paraffin-embedded (FFPE) tissues remains challenging due to suboptimal DNA quality and failure to use appropriate baseline controls for such tissues. Here, we report a modified method in analyzing CNV in FFPE tissues using microarray with Affymetrix Cytoscan HD chips. Gel purification was applied to select DNA with good quality and data of fresh frozen and FFPE tissues from healthy individuals were included as baseline controls in our data analysis. Our analysis showed a 91% overlap between CNV detection by microarray with FFPE tissues and chromosomal abnormality detection by karyotyping with fresh tissues on 8 cases of lymphoma samples. The CNV overlap between matched frozen and FFPE tissues reached 93.8%. When the analyses were restricted to regions containing genes, 87.1% concordance between FFPE and fresh frozen tissues was found. The analysis was further validated by Fluorescence In Situ Hybridization on these samples using probes specific for BRAF and CITED2. The results suggested that the modified method using Affymetrix Cytoscan HD chip gave rise to a significant improvement over most of the previous methods in terms of accuracy in detecting CNV in FFPE tissues. This FFPE microarray methodology may hold promise for broad application of CNV analysis on clinical samples.  相似文献   

13.
Proteomics analysis is important for characterizing tissues to gain biological and pathological insights, which could lead to the identification of disease-associated proteins for disease diagnostics or targeted therapy. However, tissues are commonly embedded in optimal cutting temperature medium (OCT) or are formalin-fixed and paraffin-embedded (FFPE) in order to maintain tissue morphology for histology evaluation. Although several tissue proteomic analyses have been performed on FFPE tissues using advanced mass spectrometry (MS) technologies, high-throughput proteomic analysis of OCT-embedded tissues has been difficult due to the interference of OCT in the MS analysis. In addition, molecules other than proteins present in tissues further complicate tissue proteomic analysis. Here, we report the development of a method using chemical immobilization of proteins for peptide extraction (CIPPE). In this method, proteins are chemically immobilized onto a solid support; interferences from tissues and OCT embedding are removed by extensive washing of proteins conjugated on the solid support. Peptides are then released from the solid phase by proteolysis, enabling MS analysis. This method was first validated by eliminating OCT interference from a standard protein, human serum albumin, where all of the unique peaks contributed by OCT contamination were eradicated. Finally, this method was applied for the proteomic analysis of frozen and OCT-embedded tissues using iTRAQ (isobaric tag for relative and absolute quantitation) labeling and two-dimensional liquid chromatography tandem mass spectrometry. The data showed reproducible extraction and quantitation of 10,284 proteins from 3996 protein groups and a minimal impact of OCT embedding on the analysis of the global proteome of the stored tissue samples.  相似文献   

14.
Xianyin Lai  Bryan P. Schneider 《Proteomics》2014,14(21-22):2623-2627
Because fresh‐frozen tissue samples associated with long‐term clinical data and of rare diseases are often unobtainable at the present time, formalin‐fixed paraffin‐embedded (FFPE) tissue samples are considered a highly valuable resource for researchers. However, protein extraction from FFPE tissues faces challenges of deparaffinization and cross‐link reversion. Current procedures for protein extraction from FFPE tissue require separate steps and toxic solvents, resulting in inconvenience in protein extraction. To overcome these limitations, an integrated method was developed using nontoxic solvents in four types of FFPE tissues. The average amount of proteins from three replicates of bladder, kidney, liver, and lung FFPE tissues were 442.6, 728.9, 736.4, and 694.7 μg with CVs of 7.5, 5.8, 2.4, and 4.5%, respectively. Proteomic analysis showed that 348, 417, 607, and 304 unique proteins were identified and quantified without specification of isoform by a least two peptides from bladder, kidney, liver, and lung FFPE tissue samples, respectively. The analysis of individual protein CV demonstrated that 97–99% of the proteins were quantified with a CV ≤ 30%, verifying the reproducibility of the integrated protein extraction method. In summary, the developed method is high‐yield, reproducible, convenient, simple, low cost, nonvolatile, nonflammable, and nontoxic.  相似文献   

15.
16.
Protein phosphorylation affects most eukaryotic cellular processes and its deregulation is considered a hallmark of cancer and other diseases. Phosphoproteomics may enable monitoring of altered signaling pathways as a means of stratifying tumors and facilitating the discovery of new drugs. Unfortunately, the development of molecular tests for clinical use is constrained by the limited availability of fresh frozen, clinically annotated samples. Here we report phosphopeptide analysis in human archival formalin-fixed, paraffin-embedded (FFPE) cancer samples based on immobilized metal affinity chromatography followed by liquid chromatography coupled with tandem mass spectrometry and selected reaction monitoring techniques. Our results indicate the equivalence of detectable phosphorylation rates in archival FFPE and fresh frozen tissues. Moreover, we demonstrate the applicability of targeted assays for phosphopeptide analysis in clinical archival FFPE samples, using an experimental workflow suitable for processing and analyzing large sample series. This work paves the way for the application of shotgun and targeted phosphoproteomics approaches in clinically relevant studies using archival clinical samples.  相似文献   

17.

Background

Cancer re-sequencing programs rely on DNA isolated from fresh snap frozen tissues, the preparation of which is combined with additional preservation efforts. Tissue samples at pathology departments are routinely stored as formalin-fixed and paraffin-embedded (FFPE) samples and their use would open up access to a variety of clinical trials. However, FFPE preparation is incompatible with many down-stream molecular biology techniques such as PCR based amplification methods and gene expression studies.

Methodology/Principal Findings

Here we investigated the sample quality requirements of FFPE tissues for massively parallel short-read sequencing approaches. We evaluated key variables of pre-fixation, fixation related and post-fixation processes that occur in routine medical service (e.g. degree of autolysis, duration of fixation and of storage). We also investigated the influence of tissue storage time on sequencing quality by using material that was up to 18 years old. Finally, we analyzed normal and tumor breast tissues using the Sequencing by Synthesis technique (Illumina Genome Analyzer, Solexa) to simultaneously localize genome-wide copy number alterations and to detect genomic variations such as substitutions and point-deletions and/or insertions in FFPE tissue samples.

Conclusions/Significance

The application of second generation sequencing techniques on small amounts of FFPE material opens up the possibility to analyze tissue samples which have been collected during routine clinical work as well as in the context of clinical trials. This is in particular important since FFPE samples are amply available from surgical tumor resections and histopathological diagnosis, and comprise tissue from precursor lesions, primary tumors, lymphogenic and/or hematogenic metastases. Large-scale studies using this tissue material will result in a better prediction of the prognosis of cancer patients and the early identification of patients which will respond to therapy.  相似文献   

18.
Formalin-fixed, paraffin-embedded (FFPE) tissue banks represent an invaluable resource for biomarker discovery. Recently, the combination of full-length protein extraction, GeLC-MS/MS analysis, and spectral counting quantification has been successfully applied to mine proteomic information from these tissues. However, several sources of variability affect these samples; among these, the duration of the fixation process is one of the most important and most easily controllable ones. To assess its influence on quality of GeLC-MS/MS data, the impact of fixation time on efficiency of full-length protein extraction efficiency and on quality of label-free quantitative data was evaluated. As a result, although proteins were successfully extracted from FFPE liver samples fixed for up to eight days, fixation time appeared to negatively influence both protein extraction yield and GeLC-MS/MS quantitative proteomic data. Particularly, MS identification efficiency decreased with increasing fixation times. Moreover, amino acid modifications putatively induced by formaldehyde were detected and characterized. These results demonstrate that proteomic information can be achieved also from tissue samples fixed for relatively long times, but suggest that variations in fixation time need to be carefully taken into account when performing proteomic biomarker discovery studies on fixed tissue archives.  相似文献   

19.
Formalin‐fixed paraffin‐embedded (FFPE) tissue is a rich source of clinically relevant material that can yield important translational biomarker discovery using proteomic analysis. Protocols for analyzing FFPE tissue by LC‐MS/MS exist, but standardization of procedures and critical analysis of data quality is limited. This study compared and characterized data obtained from FFPE tissue using two methods: a urea in‐solution digestion method (UISD) versus a commercially available Qproteome FFPE Tissue Kit method (Qkit). Each method was performed independently three times on serial sections of homogenous FFPE tissue to minimize pre‐analytical variations and analyzed with three technical replicates by LC‐MS/MS. Data were evaluated for reproducibility and physiochemical distribution, which highlighted differences in the ability of each method to identify proteins of different molecular weights and isoelectric points. Each method replicate resulted in a significant number of new protein identifications, and both methods identified significantly more proteins using three technical replicates as compared to only two. UISD was cheaper, required less time, and introduced significant protein modifications as compared to the Qkit method, which provided more precise and higher protein yields. These data highlight significant variability among method replicates and type of method used, despite minimizing pre‐analytical variability. Utilization of only one method or too few replicates (both method and technical) may limit the subset of proteomic information obtained.  相似文献   

20.
Next generation sequencing (NGS) is an emerging technology becoming relevant for genotyping of clinical samples. Here, we assessed the stability of amplicon sequencing from formalin-fixed paraffin-embedded (FFPE) and paired frozen samples from colorectal cancer metastases with different analysis pipelines. 212 amplicon regions in 48 cancer related genes were sequenced with Illumina MiSeq using DNA isolated from resection specimens from 17 patients with colorectal cancer liver metastases. From ten of these patients, paired fresh frozen and routinely processed FFPE tissue was available for comparative study. Sample quality of FFPE tissues was determined by the amount of amplifiable DNA using qPCR, sequencing libraries were evaluated using Bioanalyzer. Three bioinformatic pipelines were compared for analysis of amplicon sequencing data. Selected hot spot mutations were reviewed using Sanger sequencing. In the sequenced samples from 16 patients, 29 non-synonymous coding mutations were identified in eleven genes. Most frequent were mutations in TP53 (10), APC (7), PIK3CA (3) and KRAS (2). A high concordance of FFPE and paired frozen tissue samples was observed in ten matched samples, revealing 21 identical mutation calls and only two mutations differing. Comparison of these results with two other commonly used variant calling tools, however, showed high discrepancies. Hence, amplicon sequencing can potentially be used to identify hot spot mutations in colorectal cancer metastases in frozen and FFPE tissue. However, remarkable differences exist among results of different variant calling tools, which are not only related to DNA sample quality. Our study highlights the need for standardization and benchmarking of variant calling pipelines, which will be required for translational and clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号