首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The role of AtNrt2.1 and AtNrt2.2 genes, encoding putative NO(3)(-) transporters in Arabidopsis, in the regulation of high-affinity NO(3)(-) uptake has been investigated in the atnrt2 mutant, where these two genes are deleted. Our initial analysis of the atnrt2 mutant (S. Filleur, M.F. Dorbe, M. Cerezo, M. Orsel, F. Granier, A. Gojon, F. Daniel-Vedele [2001] FEBS Lett 489: 220-224) demonstrated that root NO(3)(-) uptake is affected in this mutant due to the alteration of the high-affinity transport system (HATS), but not of the low-affinity transport system. In the present work, we show that the residual HATS activity in atnrt2 plants is not inducible by NO(3)(-), indicating that the mutant is more specifically impaired in the inducible component of the HATS. Thus, high-affinity NO(3)(-) uptake in this genotype is likely to be due to the constitutive HATS. Root (15)NO(3)(-) influx in the atnrt2 mutant is no more derepressed by nitrogen starvation or decrease in the external NO(3)(-) availability. Moreover, the mutant also lacks the usual compensatory up-regulation of NO(3)(-) uptake in NO(3)(-)-fed roots, in response to nitrogen deprivation of another portion of the root system. Finally, exogenous supply of NH(4)(+) in the nutrient solution fails to inhibit (15)NO(3)(-) influx in the mutant, whereas it strongly decreases that in the wild type. This is not explained by a reduced activity of NH(4)(+) uptake systems in the mutant. These results collectively indicate that AtNrt2.1 and/or AtNrt2.2 genes play a key role in the regulation of the high-affinity NO(3)(-) uptake, and in the adaptative responses of the plant to both spatial and temporal changes in nitrogen availability in the environment.  相似文献   

4.
5.
6.
7.
8.
The effect of pH and Ca2+ on net NO3- uptake, influx, and efflux by intact roots of barley (Hordeum vulgare L.) seedlings was studied. Seedlings were induced with NO3- or NO2-. Net NO3- uptake and efflux, respectively, were determined by following its depletion from, and accumulation in, the external solution. Since roots of both uninduced and NO2(-)-induced seedlings contain little internal NO3- initial net uptake rates are equivalent to influx (M. Aslam, R.L. Travis, R.C. Huffaker [1994] Plant Physiol 106: 1293-1301). NO3-, uptake (influx) by these roots was little affected at acidic pH. In contrast, in NO3(-)-induced roots, which accumulate NO3-, net uptake rates decreased in response to acidic pH. Under these conditions, NO3- efflux was stimulated and was a function of root NO3- concentration. Conversely, at basic pH, NO3- uptake by NO3- and NO2(-)-induced and uninduced roots decreased, apparently because of the inhibition of influx. Calcium had little effect on NO3- uptake (influx) by NO2(-)-induced roots at either pH 3 or 6. However, in NO3(-)-induced roots, lack of Ca2+ at pH 3 significantly decreased net NO3- uptake and stimulated efflux. The results indicate that at acidic pH the decrease in net NO3- uptake is due to the stimulation of efflux, whereas at basic pH, it is due to the inhibition of influx.  相似文献   

9.
Despite the ubiquitous presence of ericoid mycorrhizal (ERM) fungi in cranberry (Vaccinium macrocarpon), no prior studies have examined the effect of ERM colonization on NO(3)(-) influx kinetics. Here, (15)NO(3)(-) influx was measured in nonmycorrhizal and mycorrhizal cranberry in hydroponics. Mycorrhizal cranberry were inoculated with the ERM fungus Rhizoscyphus (syn. Hymenoscyphus) ericae. (15)NO(3)(-) influx by R. ericae in solution culture was also measured. Rhizoscyphus ericae NO(3)(-) influx kinetics were linear when mycelium was exposed for 24 h to 3.8 mm NH(4)(+), and saturable when pretreated with 3.8 mm NO(3)(-), 50 microm NO(3)(-), or 50 microm NH(4)(+). Both low-N pretreatments induced greater NO(3)(-) influx than either of the high-N pretreatments. Nonmycorrhizal cranberry exhibited linear NO(3)(-) influx kinetics. By contrast, mycorrhizal cranberry had saturable NO(3)(-) influx kinetics, with c. eightfold greater NO(3)(-) influx than nonmycorrhizal cranberry at NO(3)(-) concentrations from 20 microm to 2 mm. There was no influence of pretreatments on cranberry NO(3)(-) influx kinetics, regardless of mycorrhizal status. Inoculation with R. ericae increased the capacity of cranberry to utilize NO(3)(-)-N. This finding is significant both for understanding the potential nutrient niche breadth of cranberry and for management of cultivated cranberry when irrigation water sources contain nitrate.  相似文献   

10.
This study measured total osmolarity and concentrations of NH(4)(+), NO(3)(-), K(+), soluble carbohydrates, and organic acids in maize seminal roots as a function of distance from the apex, and NH(4)(+) and NO(3)(-) in xylem sap for plants receiving NH(4)(+) or NO(3)(-) as a sole N-source, NH(4)(+) plus NO(3)(-), or no nitrogen at all. The disparity between net deposition rates and net exogenous influx of NH(4)(+) indicated that growing cells imported NH(4)(+) from more mature tissue, whereas more mature root tissues assimilated or translocated a portion of the NH(4)(+) absorbed. Net root NO(3)(-) influx under Ca(NO(3))(2) nutrition was adequate to account for pools found in the growth zone and provided twice as much as was deposited locally throughout the non-growing tissue. In contrast, net root NO(3)(-) influx under NH(4)NO(3) was less than the local deposition rate in the growth zone, indicating that additional NO(3)(-) was imported or metabolically produced. The profile of NO(3)(-) deposition rate in the growth zone, however, was similar for the plants receiving Ca(NO(3))(2) or NH(4)NO(3). These results suggest that NO(3)(-) may serve a major role as an osmoticant for supporting root elongation in the basal part of the growth zone and maintaining root function in the young mature tissues.  相似文献   

11.
12.
Compensation by dark-period uptake of NH(4)(+) and NO(3)(-) in the grasses Phleum pratense L. and Festuca pratensis Huds. following N deprivation during the preceding light period was investigated in flowing solution culture under an artificial 10/14 h light/dark cycle. N was supplied as either NO(3)(-), NH(4)(+) or NH(4)NO(3) at 20+/-5 mmol m(-3), available continuously or only during the dark period, for 5-10 d. Intermittent N supply did not affect total daily N uptake, growth rate or net partitioning of dry matter. Net uptake and influx of NO(3)(-) varied similarly throughout the diurnal cycle when NO(3)(-) was supplied continuously, with a marginal contribution by NO(3)(-) efflux. Influx was significantly higher and efflux slightly higher following interruption of NO(3)(-) supply during the light period. Nitrate accounted for 80% of N in xylem exudate except between hours 6-9 of the light period when the amino acid concentration increased 3-fold, primarily as glutamine. Diurnal variation in relative NO(3)(-) uptake exhibited five phases of constant acceleration/deceleration, described reasonably well assuming NO(3)(-) influx was subject to metabolic co-regulation by NO(3)(-) and amino acid levels in the cytoplasmic compartment of the roots. Accordingly, influx is determined by variation in root NO(3)(-) levels throughout the dark period and the first half of the light period, but is down-regulated by increased amino acid levels during the second half of the light period. The sharp light/dark transitions affect transpiration rate and hence xylem N flux which, in turn, affect NO(3)(-) levels in the cytoplasmic compartment of the roots and the rate of NO(3)(-) assimilation in the shoot.  相似文献   

13.
Using the facultative root hemiparasite Rhinanthus minor and Hordeum vulgare as a host, the flows, depositions, and metabolism of abscisic acid (ABA) within the host, within the parasite, and between host and parasite have been studied. When the plants were supplied with 5 mM NO(3)(-), there were weak or no effects of parasitism on ABA flows, biosynthesis, and ABA degradation in barley. However, ABA deposition was significantly affected in the leaf laminae (3-fold) and in the leaf sheath (2.4-fold), but not in roots. Dramatic changes in ABA flows, metabolism, and deposition on a per plant basis, however, have been observed in Rhinanthus. Biosynthesis in the roots was 12-fold higher after attachment, resulting in 14-fold higher ABA flows in the xylem. A large portion of this ABA was metabolized, a small portion was deposited. Phloem flows of ABA were increased 13-fold after attachment. The concentrations of ABA in tissues and transport fluids were higher in attached Rhinanthus by an order of magnitude than in host tissues and xylem sap. The same tendency was also found in a comparison between single Rhinanthus and unparasitized barley. As compared with 5 mM NO(3)(-), lower NO(3)(-) or 1 mM NH(4)(+) supply doubled the ABA concentrations in barley leaf laminae, while having only small or non-significant effects in the other organs. The possible function of ABA for the parasite is discussed.  相似文献   

14.
15.
Up-regulation of the high-affinity transport system (HATS) for NO(3)(-) and stimulation of lateral root (LR) growth are two important adaptive responses of the root system to nitrogen limitation. Up-regulation of the NO(3)(-) HATS by nitrogen starvation is suppressed in the atnrt2.1-1 mutant of Arabidopsis (Arabidopsis thaliana), deleted for both NRT2.1 and NRT2.2 nitrate transporter genes. We then used this mutant to determine whether lack of HATS stimulation affected the response of the root system architecture (RSA) to low NO(3)(-) availability. In Wassilewskija (Ws) wild-type plants, transfer from high to low NO(3)(-) medium resulted in contrasting responses of RSA, depending on the level of nitrogen limitation. Moderate nitrogen limitation (transfer from 10 mm to 1 or 0.5 mm NO(3)(-)) mostly led to an increase in the number of visible laterals, while severe nitrogen stress (transfer from 10 mm to 0.1 or 0.05 mm NO(3)(-)) promoted mean LR length. The RSA response of the atnrt2.1-1 mutant to low NO(3)(-) was markedly different. After transfer from 10 to 0.5 mm NO(3)(-), the stimulated appearance of LRs was abolished in atnrt2.1-1 plants, whereas the increase in mean LR length was much more pronounced than in Ws. These modifications of RSA mimicked those of Ws plants subjected to severe nitrogen stress and could be fully explained by the lowered NO(3)(-) uptake measured in the mutant. This suggests that the uptake rate of NO(3)(-), rather than its external concentration, is the key factor triggering the observed changes in RSA. However, the mutation of NRT2.1 was also found to inhibit initiation of LR primordia in plants subjected to nitrogen limitation independently of the rate of NO(3)(-) uptake by the whole root system and even of the presence of added NO(3)(-) in the external medium. This indicates a direct stimulatory role for NRT2.1 in this particular step of LR development. Thus, it is concluded that NRT2.1 has a key dual function in coordinating root development with external NO(3)(-) availability, both indirectly through its role as a major NO(3)(-) uptake system that determines the nitrogen uptake-dependent RSA responses, and directly through a specific action on LR initiation under nitrogen-limited conditions.  相似文献   

16.
17.
The inhibitory effect of NH4+ on net NO3- uptake has been attributed to an enhancement of efflux and, recently, to an inhibition of influx. To study this controversy, we devised treatments to distinguish the effects of NH4+ on these two processes. Roots of intact barley (Hordeum vulgare L.) seedlings, uninduced or induced with NO3- or NO2-, were used. Net uptake and efflux, respectively, were determined by following the depletion and accumulation in the external solutions. In roots of both uninduced and NO2- -induced seedlings, NO3- efflux was negligible; hence, the initial uptake rates were equivalent to influx. Under these conditions, NH4+ had little effect on NO3- uptake (influx) rates by either the low- or high-Km uptake systems. In contrast, in plants preloaded with NO3-, NH4+ and its analog CH3NH3+ decreased net uptake, presumably by enhancing NO3- efflux. The stimulatory effect of NH4+ on NO3- efflux was a function of external NH4+ and internal NO3- concentration. These results were corroborated by the absence of any effect of NH4+ on NO2- uptake unless the roots were preloaded with NO2-. In this case NH4+ increased efflux and decreased net uptake. Hence, the main effect of NH4+ on net NO3- and NO2- uptake appears to be due to enhancement of efflux and not to inhibition of influx.  相似文献   

18.
19.
Rice has a preference for uptake of ammonium over nitrate and can use ammonium-N efficiently. Consequently, transporters mediating ammonium uptake have been extensively studied, but nitrate transporters have been largely ignored. Recently,some reports have shown that rice also has high capacity to acquire nitrate from growth medium, so understanding the nitrate transport system in rice roots is very important for improving N use efficiency in rice. The present study identified four putative NRT2 and two putative NAR2 genes that encode components of the high-affinity nitrate transport system (HATS) in the rice (Oryza sativa L. subsp, japonica cv. Nipponbare) genome. OsNRT2.1 and OsNRT2.2 share an identical coding region sequence, and their deduced proteins are closely related to those from monocotyledonous plants. The two NAR2 proteins are closely related to those from mono-cotyledonous plants as well. However, OsNRT2.3 and OsNRT2.4 are more closely related to Arabidopsis NRT2 proteins. Relative quantitative reverse tranecdption-polymerase chain reaction analysis showed that all of the six genes were rapidly upregulated and then downregulated in the roots of N-starved rice plants after they were re-supplied with 0.2 mM nitrate, but the response to nitrate differed among gene members.The results from phylogenetic tree, gene structure and expression analysis implied the divergent roles for the individual members of the rice NRT2 and NAR2 families. High-affinity nitrate influx rates associated with nitrate induction in rice roots were investigated and were found to be regulated by external pH. Compared with the nitrate influx rates at pH 6.5, alkaline pH (pH 8.0) inhibited nitrate Influx, and acidic pH (pH 5.0) enhanced the nitrate influx In I h nitrate induced roots, but did not significantly affect that in 4 to 8 h nitrate induced roots.  相似文献   

20.
During anoxia, cytoplasmic pH regulation is crucial. Mechanisms of pH regulation were studied in the coleoptile of rice exposed to anoxia and pH 3.5, resulting in H(+) influx. Germinating rice seedlings survived a combination of anoxia and exposure to pH 3.5 for at least 4 d, although development was retarded and net K(+) efflux was continuous. Further experiments used excised coleoptile tips (7-10 mm) in anoxia at pH 6.5 or 3.5, either without or with 0.2 mM NO(3)(-), which distinguished two processes involved in pH regulation. Net H(+) influx (μmol g(-1) fresh weight h(-1)) for coleoptiles with NO(3)(-) was ~1.55 over the first 24 h, being about twice that in the absence of NO(3)(-), but then decreased to 0.5-0.9 as net NO(3)(-) uptake declined from ~1.3 to 0.5, indicating reduced uptake via H(+)-NO(3)(-) symports. NO(3)(-) reduction presumably functioned as a biochemical pHstat. A second biochemical pHstat consisted of malate and succinate, and their concentrations decreased substantially with time after exposure to pH 3.5. In anoxic coleoptiles, K(+) balancing the organic anions was effluxed to the medium as organic anions declined, and this efflux rate was independent of NO(3)(-) supply. Thus, biochemical pHstats and reduced net H(+) influx across the plasma membrane are important features contributing to pH regulation in anoxia-tolerant rice coleoptiles at pH 3.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号