首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photomanipulation of phytochrome in lettuce seeds   总被引:4,自引:2,他引:2       下载免费PDF全文
Seeds of lettuce (Lactuca sativa L. cv. Grand Rapids) were imbibed and given either short irradiation with red or far red light prior to drying or dried under continuous red or far red light. Seeds treated with either short or continuous red germinate in darkness, whereas seeds treated with either short or continuous far red require a short exposure to red light, after a period of imbibition, to stimulate germination. Irradiation of dry red seeds with far red light immediately before sowing results in a marked inhibition of germination. This result was predicted since far red-absorbing form phytochrome can be photoconverted to the intermediate P650 (absorbance maximum 650 nm) in freeze-dried tissue. A similar far red treatment to continuous red seeds is less effective and it is concluded that in these seeds a proportion of total phytochrome is blocked as intermediates between red-absorbing and far red-absorbing form phytochrome, which only form the far red-absorbing form of phytochrome on imbibition. The inhibition of dry short red seeds by far red light can be reversed by an irradiation with short red light given immediately before sowing, confirming that P650 can be photoconverted back to the far red-absorbing form of phytochrome. The results are discussed in relation to seed maturation (dehydration) on the parent plant.  相似文献   

2.
Cucumber seeds are light-sensitive, dark-germinating seeds. Inhibition of germination can be induced by prolonged exposure to continuous or intermittent FR. The dark germination process and the response to FR are phytochrome controlled. Phytochrome can be detected in these seeds by differential spectrophotometry in vivo. Spectrophotometrically measurable phytochrome increases during dark germination. The rate of increase is temperature dependent. Light treatments which are inhibitory for germination result in phytochrome contents lower than those of the seeds germinating in darkness. Treatments which restore germination also restore phytochrome formation.  相似文献   

3.
It has previously been demonstrated that far-red irradiation of dry Lactuca sativa L. seeds results in inhibition of subsequent germination. Although red has no effect on dry seeds, a red irradiation following a farred irradiation reverses the effect of far-red. This phenomenon is most noticeable in seeds with artificially raised levels of phytochrome in the far-red absorbing form. Qualitatively similar results have been found for the seeds of Plantago major L., Sinapis arvensis L., and Bromus sterilis L. Action spectra studies on Plantago seeds show that the action peaks for promotion and inhibition of germination of hydrated seeds are at 660 and 730 nanometers, respectively. The action spectrum for inhibition of subsequent germination following irradiation of dry seeds is qualitatively and quantitatively similar to that for hydrated seeds, with an action peak at 730 nanometers, indicating absorption by phytochrome in the far-red absorbing form. However, the action spectrum for the reversal of this far-red effect on dry seeds has a broad peak at 680 nanometers and subsidiary peaks at 650 and 600 nanometers. It is proposed that this effect is due to light absorption by the phytochrome intermediate complex meta-Fa, and that the action spectrum reflects the in vivo absorption properties of this intermediate.  相似文献   

4.
The sensitivity of lettuce (Lactuca sativa L. cv Grand Rapids) seeds to red light was reduced by NaCl concentrations which had no effect upon the germination of continuously illuminated seeds. The germination capacity of the seeds was fully restored by increased red light exposures. Indirect evidence indicates that NaCl does not affect the photoconversion of red-absorbing form of phytochrome to the far-red absorbing form of phytochrome. Instead, the increased red light requirements are attributable to increases in the threshold levels of the far-red absorbing form of phytochrome necessary to induce germination and to changes in the slopes of the fluence-response curves. Results also show that the sensitivity of the seeds to NaCl decreased as the time between red light irradiation and the imposition of NaCl stress increased.  相似文献   

5.
Summary After inhibition of Nemophila insignis seeds by far-red (FR) light, a short exposure to blue (Bl) will not induce germination again but stimulation by red (R), with reversion by FR, can be observed. Germination is inhibited by long exposures to Bl (maxima at 455 and 475 nm). These radiations are absorbed either directly by phytochrome or through intermediary pigments such as flavoproteins.Abbreviations Bl blue - FR far-red - R red  相似文献   

6.
Promotion of germination by red light fails after prolonged dark imbibition of Rumex crispus L. seeds, indicative of a secondary dormancy. The degree and rate of inception of the dormancy increases with increasing temperature. Following establishment of the dormancy, germination response to red light can be restored by either prolonged cold treatment or brief high temperature shifts. Loss of phytochrome was not a factor in the initial establishment of the dormancy. When the seeds are in secondary dormancy, the chromophore of phytochrome can be transformed to the far red-absorbing form, but the far red-absorbing form cannot induce germination. The responses to changes in temperature suggested dependence of germination on order disorder transitions in components of the seeds.  相似文献   

7.
Germination ofPinus banksiana seeds is controlled by the photoreversible phytochrome reaction. The seeds, even unimbibed, are sensitive to red light. At 660 nm, the energy required to promote germination to the same order of magnitude is much higher for unimbibed seeds than for the imbibed ones. In both cases it is possible to reverse the effect of a single red light irradiation by applying far red light (730 nm).  相似文献   

8.
High germination of curly dock (Rumex crispus L.) seeds is evident after suitable imbibition and temperature shift treatment, but germination at constant temperatures fails without an input of far red-absorbing form of phytochrome. Preliminary imbibitions at high temperatures (30 C) sharply reduce germination induced by temperature shifts. High germination may be restored by low energies of red radiation, or by brief far red adequate for the photosteady state. Prolonged far red during imbibition also nullifies temperature shift-induced germination. After prolonged far red, high germination may be restored by red radiation of an energy dependent upon the duration of the far red treatment. The evidence supports the conclusion that dark germination induced by temperature shifts arises from the interaction of pre-existent far red-absorbing form of phytochrome in the mature seeds with the temperature shift.  相似文献   

9.
Effects of red (600 to 680 nanometers) and far red (700 to 760 nanometers) irradiances on Amaranthus retroflexus L. seeds indicate that synthesis of phytochrome in the red-absorbing form takes place in water-imbibed nongerminating seeds at 35 C. After 96 hours in darkness, conversion of about 0.10% phytochrome to the far red-absorbing form induces 50% germination. Continuous far red radiation at 35 C with an irradiance of 0.4 × 10−10 Einsteins per square centimeter per second caused photoinactivation of phytochrome about equal to the rate of synthesis. Germination of seeds at 35 C, following far red irradiation adequate to establish the photostationary state, is enhanced by holding at 26 C for 16 minutes. Germination is unaffected relative to controls at constant temperature, if the period at 26 C precedes irradiation. The results indicate a quick response to action of phytochrome in a germination process.  相似文献   

10.
Phytochrome in seeds of Amaranthus caudatus   总被引:1,自引:1,他引:0  
Summary Dry seeds of Amaranthus caudatus show little or no photoreversible absorption changes, attributable to phytochrome. During imbibition phytochrome appears in two phases, one immediately after sowing and the second after about 8 hr. Experiments at different temperatures and under continuous illumination with red, far-red and blue light suggest that there are two pools of phytochrome. The first phase in the appearance of phytochrome could be due to the change in optical properties of the sample on hydration or to rehydration of inactive phytochrome, or both. The second phase probably represents phytochrome synthesis. It is absent at 0° and precedes the water uptake associated with germination by some 10 hr. This second pool of phytochrome does not accumulate in red and blue illuminated seeds indicating that the rate of P fr decay is more rapid than the rate of phytochrome synthesis. The difference spectra of phytochrome in both 2 hr imbibed seeds and 72 hr old seedlings show peaks of absorption at 663 and 735 nm. The presence of P fr in dark imbibed seeds and the process of inverse reversion of P r to P fr in darkness have been demonstrated. The results are discussed in relation to previous hypotheses for the mechanism of photocontrol of Amaranthus seed germination.  相似文献   

11.
Taylorson RB 《Plant physiology》1975,55(6):1093-1097
A 10 C dark prechilling of johnsongrass [Sorghum halepense (L.) Pers.] seeds, when terminated by a 2-hr, 40 C temperature shift, potentiates about 40% germination at 20 C in darkness. Irradiation of the seeds before, during, and at the end of prechilling with far red light reduces the subsequent germination, although red irradiation after the far red can overcome some of the inhibition. However, either brief red or far red irradiation given immediately after the temperature shift inhibits subsequent germination by one-third to one-half. The results suggest that the far red-absorbing form of phytochrome is a factor in the prechill-induced dark germination and that phytochrome participates in the inhibition of germination by irradiations immediately after the temperature shift.  相似文献   

12.
Dark reversion of the far red-absorbing form of phytochrome, which does not occur in dry lettuce (Lactuca sativa var. Grand Rapids) seeds, appears to take place in seeds stored in a water-saturated atmosphere. The water content (approximately 70% after 10 days) of such seeds is insufficient to support germination; however the treatment enhances germination in seeds stored for 1 to 5 days, but this enhancement subsequently disappears, and the effect of extended storage (up to 28 days) is inhibiting. The half-time for dark far red-absorbing phytochrome reversion is 7 to 8 days, and at this time it can be completely reversed by exposing the seeds to a flash of red light. Storage of more than 7 to 8 days decreases red light enhancement of germination.  相似文献   

13.
Dennis Gwynn  Joseph Scheibe 《Planta》1972,106(3):247-257
Summary Using a 2-h irradiation period at constant quantum irradiance, a complete action spectrum for inhibition of germination of lettuce seed has been obtained. Action maxima were near 470 and 720 nm, the latter being the most active wavelength. It was also shown, under conditions where light inhibition cannot occur, that phytochrome potentiation of germination is maximal at all wavelengths below 700 nm, including the highly active blue region. Evidence was presented for promotion of germination by a 2-h irradiation in the red which cannot be explained on the basis of conversion of phytochrome to the active form.Abbreviations Bl blue - FR far-red, PFR far-red-absorbing form of phytochrome - R red Supported in part by funds provided for biological and medical research by the State of Washington Initiative Measure No. 171 and the Graduate School Research Funds.  相似文献   

14.
This paper deals with the role of light in the germination of akinetes of Anabaena azollae. The two maxima action spectra are situated at 385 and 615 nm and the stimulation of the germination process by photosynthate was confirmed. The photoreceptor absorbing at 385 nm was identified as a flavin and that at 615 nm as a phytochrome. A model is suggested for the mode of action of light in the germination of akinetes of blue-green algae.C. Tsui  相似文献   

15.
Both red light (10 minutes) and 35°C treatment (60 minutes) stimulate the germination of seeds of Rumex obtusifolius otherwise maintained in darkness at 25°C. Fluence response curves were determined for the effect of red light to stimulate germination of seeds with and without 35°C treatment. The endogenous far-red absorbing form (Pfr) level in the seeds was determined using short saturating fluences of wavelengths of light which maintain different proportions of phytochrome as Pfr at equilibrium. In the seed batches investigated, the endogenous Pfr level was found to be 4% or less of the total phytochrome. High dark germination after 35°C treatment does not result from an increase in sensitivity of the whole population to Pfr. Calculated fluence response curves for germination which best fit the experimental data suggest that seeds germinate in darkness after 35°C treatment because of a nonphytochrome-related process (overriding factor).  相似文献   

16.
Germination of Rumex obtusifolius L. seeds (nutlets) is low in darkness at 25° C. Germination is stimulated by exposure to 10 min red light (R) and also by a 10-min elevation of temperature to 35° C. A 10-min exposure to far-red light (FR) can reverse the effect of both R (indicating phytochrome control) and 35° C treatment. Fluence-response curves for this reversal of the effect of R and 35° C treatments are quantitatively identical. Treatment for 10 min with light of wavelenght 680, 700, 710 and 730 nm, after R and 35° C treatment, demonstrates that germination induced by 35° C treatment results from increased sensitivity to a pre-existing, active, far-red-absorbing form of phytochrome (Pfr) in the seeds.Abbreviations FR far-red light - P phytochrome - Pr red-absorbing form of P - Pfr far-red-absorbing form of P - R red light  相似文献   

17.
Janet R. Hilton 《Planta》1982,155(6):524-528
Seeds ofBromus sterilis L. germinated between 80–100% in darkness at 15° C but were inhibited by exposure to white or red light for 8 h per day. Exposure to far-red light resulted in germination similar to, or less than, that of seeds maintained in darkness. Germination is not permanently inhibited by light as seeds attain maximal germination when transferred back to darkness. Germination can be markedly delayed by exposure to a single pulse of red light following 4 h inhibition in darkness. The effect of the red light can be reversed by a single pulse of far-red light indicating that the photoreversible pigment phytochrome is involved in the response. The response ofB. sterilis seeds to light appears to be unique; the far-red-absorbing form of phytochrome (Pfr) actually inhibiting germination.Abbreviations Pr red absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome  相似文献   

18.
Summary Phytochrome was found by direct spectrophotometry to be present in whole dry seeds of cucumber. This pigment is spectroscopically different from the pigment found in etiolated plants. It shows the phenomenon of inverse reversion; in darkness, the red-absorbing form (Pr) reverts slowly to the far-red-absorbing form (Pfr). This may explain why 75% of the dry-seed phytochrome is in the Pfr form.After imbibition, total phytochrome in the seeds starts to increase. The newly-formed pigment is all in the Pr form and has properties similar to those of classical phytochrome of etiolated plants. The relationship of this newly-formed phytochrome with control of germination is presently not known. The dry-seed phytochrome remains unchanged during imbibition and appears to retain its capacity for inverse reversion. This may explain the requirement for continuous or intermittent far-red irradiation in the suppression of germination of cucumber seeds. A similar form of phytochrome may be responsible for control of germination in other seeds which are similarly affected by far-red radiation.Partially supported by National Science Foundation grant GB-7526.279th Communication.  相似文献   

19.
Dry lettuce seeds (Lactuca sativa L. cv. Grand Rapids), whichreceived 5 min far-red light (FR) 0.5 h after the onset of waterimbibition, showed 17% and 50% germination without and withacid immersion treatment (pH 0.1) for 1 h and rinsing with water,respectively. The acid treatment caused only 6% germinationor less in FR-treated seeds held for 10 to 30 d in dark storage.The 10 to 30 d skotodormant seeds did not respond to red light(R) or gibberellin A3 (GA3) singly, but showed 84% or higherpercentage germination if 1 h acid immersion was given beforeR or GA3. The 20 d skotodormant seeds, which received R treatmentat day 10 but remained dormant showed 89% germination with onlyacid treatment. Similar values were obtained with 30 d skotodormantseeds which received one or two R treatments at day 10 or 20,i.e. the only requirement for these R-treated dormant seedswas an acid immersion. This releases the skotodormancy and rendersthe seeds more sensitive to R or GA3, but the skotodormancywas initiated again if no light or hormone treatments were givenimmediately. The repetitive R or GA3 treatments, which did notcause skotodormant seeds to germinate, lessened the degree ofskotodormancy. The germination of these skotodormant seeds canonly be induced by the synergistic action of R and GA3. In thisstudy, GA3 caused higher germination percentages in R-treatedskotodormant seeds than R stimulated in GA3-treated seeds. Itis suggested that (i) repetitive R or Ga3 treatments maintaina high endogenous level of the far-red-absorbing form of phytochrome(Pfr) and GA activity, respectively, (ii) the accumulated stableintermediates of phytochrome persist in fully-imbibed skotodormantseeds for up to 20 d, without phytochrome expressing its functionuntil the seeds are acidified and (iii) a model is formulatedto interpret the results of acidification, growth promotersand R effects on germination of light-sensitive lettuce seeds. Key words: Phytochrome, Latuca saliva, seed germination, dark reversion of phytochrome, gibberellin A3, acidification, skotodormancy  相似文献   

20.
Red light with a wavelength of 660 nm promotes germination of longleaf pine (Pinus palustris Mill.) seeds, and far-red light (730 nm) inhibits germination. The promotion-inhibition process is repeatedly reversible, indicating that germination is controlled by the photoreversible reaction of phytochrome. Response varied greatly between single-tree lots and was dependent on the length of time seeds were imbibed at 5°C. Dry seeds did not respond to light treatments when they were subsequently imbibed and tested in darkness. Stratification for 28 days essentially removed the light requirements for germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号