首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The freezing tolerance of many plants, such as pea (Pisum sativum),is increased by exposure to low temperature or abscisic acidtreatment, although the physiological basis of this phenomenonis poorly understood. The freezing tolerance of pea shoot tips,root tips, and epicotyl tissue was tested after cold acclimationat 2C, dehydration/rehydration, applications of 10–4M abscisic acid (ABA), and deacclimation at 25C. Tests wereconducted using the cultivar ‘Alaska’, an ABA-deficientmutant ‘wil’, and its ‘wildtype’. Freezinginjury was determined graphically as the temperature that caused50% injury (T50) from electrical conductivity. Endogenous ABAwas measured using an indirect enzyme-linked immunosorbant assay,and novel proteins were detected using 2-dimensional polyacrylamidegel electrophoresis. The maximum decrease in T50 for root tissuewas 1C for all genotypes, regardless of treatment. For ‘Alaska’shoot tips and epicotyl tissue, exogenous ABA increased thefreezing tolerance by –1.5 to –4.0C, while coldtreatment increased the freezing tolerance by –7.5 to–14.8C. Cold treatment increased the freezing toleranceof shoot tips by –9 and –15C for ‘wil’and ‘wild-type’, respectively. Cold acclimationincreased endogenous ABA concentrations in ‘Alaska’shoot tips and epicotyls 3- to 4-fold. Immunogold labeling increasednoticeably in the nucleus and cytoplasm of the epicotyl after7 d at 2C and was greatest after 30 d at the time of maximumfreezing tolerance and soluble ABA concentration. Cold treatmentinduced the production of seven, three, and two proteins inshoot, epicotyl, and root tissue of ‘Alaska’, respectively.In ‘Alaska’ shoot tissue, five out of seven novelproteins accumulated in response to both ABA and cold treatment.However, only a 24 kDa protein was produced in ‘wil’and ‘wild-type’ shoot and epicotyl tissues aftercold treatment. Abscisic acid and cold treatment additivelyincreased the freezing tolerance of pea epicotyl and shoot tissuesthrough apparently independent mechanisms that both resultedin the production of a 24 kDa protein. Key words: Pisum sativum, cold acclimation, immuno-localization  相似文献   

2.
Five Gladiolus cultivars, namely ‘Aldebaran’, ‘BrightEye’, ‘Illusion’, ‘Manisha’ and‘Manmohan’, were exposed to 1 and 2 µg l–1sulphur dioxide to test their relative-sensitivity toleranceto the pollutant Plants were fumigated experimentally for 2h daily Foliar injury symptoms were observed first in ‘Manisha’followed by ‘Aldebaran’ and ‘Illusion’at the higher dose Photosynthetic pigments and leaf extractpH were significantly decreased, particularly in ‘Manisha’and ‘Illusion’ Overall disturbances in the plantmetabolism due to SO2 treatment led to retarded growth of plants,as evident from decreased shoot length and phytomass valuesThe order of sensitivity of the five Gladiolus cultivars toSO2 was as follows, with the greatest first Manisha, Illusion,Aldebaran, Bright Eye, Manmohan Cultivars, Gladiolus, sensitivity, sulphur dioxide, tolerance  相似文献   

3.
KING  G. A.; HEYES  J. K. 《Annals of botany》1986,58(5):633-640
Cytological examination showed that day 3 pea embryo cells wereundifferentiated in terms of morphological or gross cytologicalappearance. Histogenesis had commenced by day 4 and was accompaniedby cytological differentiation with a gradient in vacuolationapparent along the root/shoot axis. Day 3 embryonic cells werecytologically different from meristematic (day 4 and 5) cellsof the shoot apex. Cells of the embryo base appeared to havean intimate association with the middle suspensor cells. Pisum sativum L. cv. ‘Alaska’, pea, morphology, cytology, histogenesis, development  相似文献   

4.
The role of ABA in the induction of freezing tolerance was investigatedin two wheat (T. aestivum L.) cultivars, Glenlea (spring var)and Fredrick (winter var). Exogenous application of ABA (5x10–5M for 5 days at 24°C) increased the freezing tolerance ofintact plants by only 3°C (LT50) in both cultivars. Maximalfreezing tolerance (LT50 of –9°C for Glenlea and –17°Cfor Fredrick) could only be obtained with a low temperaturetreatment (6/2°C; day/night) for 40 days. These resultsshow that exogenously applied ABA cannot substitute for lowtemperature requirementto induce freezing tolerance in intactwheat plants. Furthermore, there was no increase in the endogenousABA level of wheat plants during low temperature acclimation,suggesting the absence of an essential role for ABA in the developmentof freezing tolerance in intact plants. On the other hand, ABAapplication (5x10–5 M for 5 days at 24°C) to embryogenicwheat calli resulted in an increase of freezing tolerance similarto that achieved by low temperature. However, as in intact plants,there was no increase in the endogenous ABA level during lowtemperature acclimation of calli. These results indicate thatthe induction of freezing tolerance by low temperature is notassociated with an increase in ABA content. Using an antibodyspecific to a protein family associated with the developmentof freezing tolerance, we demonstrated that the induction offreezing tolerance by ABA in embryogenic wheat calli was correlatedwith the accumulation of a new 32 kDa protein. This proteinis specifically induced by ABA but shares a common antigenicitywith those induced by low temperature. These results suggestthat ABA induces freezing tolerance in wheat calli via a regulatorymechanism different from that of low temperature. (Received June 15, 1993; Accepted September 16, 1993)  相似文献   

5.
The auxins contained in 5-mm. tips of horizontal Vicia fabaroots have been compared with those in tips of vertical rootsafter cold ethanol extraction, paper-chromatographic separation,and Avena mesocotyl bioassay. At about the time curvature commencesin horizontal roots there is a marked increase in the contentof an auxin corresponding to ‘AP(ii)’ of pea roots(Rf 0.35–0.65 in isobutanol/methanol/water). There areindications that this is not due to its release from an inactivebound state but that it is either synthesized de novo or maybe converted from another auxin corresponding to ‘AP(iii)’of pea roots (Rf 0.75–1.0). The literature dealing with the auxins of geotropically stimulatedorgans is reassessed and it is concluded that, with the exceptionof the Avena coleoptile, there is very little evidence favouringa simple transport redistribution of auxin under gravity; themajority of the data favour an effect of gravity on auxin metabolism.  相似文献   

6.
Zhang, J. and Davies, W. J. 1987. Increased synthesis of ABAin partially dehydrated root tips and ABA transport from rootsto leaves.—J. exp. Bot. 38: 2015–2023. Isolated root tips of pea (Pisum sativum L. cv. Feltham First)and Commelina communis L. were air-dried until they lost between10% and 40% of their fresh weight, followed by a period of incubationat these reduced water contents. These treatments resulted inincreased ABA production, suggesting that root tips of bothspecies have the capacity to synthesize ABA in increased amountswhen water deficits develop in the root. The ABA concentrationin pea roots increased linearly as turgors fell below about0·15 M Pa and relative water contents (R WC) fell below90%. Commelina roots produced more ABA when RWC fell below asimilar value but the threshold turgor for increased ABA productionin Commelina roots was around 0·30 MPa. Roots of intact plants loaded with ABA as a result of incubationin solutions of varying concentrations provided ABA to leaveswhich resulted in increased ABA concentrations in the leaveswhen these were assayed several hours later. This occurred whenthese roots were not contributing substantially to transpirationalflux. Leaves on shoots that were enclosed and darkened and thereforenot transpiring, did not accumulate ABA from ‘loaded’roots. A role for root-sourced ABA in root-to-shoot communication ofthe effects of soil drying is discussed. Key words: ABA, roots, water relations  相似文献   

7.
Seeds ofTaxus maireiare known for their deep dormancy whichcan only be broken by a procedure involving warm stratificationfollowed by cold stratification. Treatments with alternatingtemperatures of 25/15 or 23/11 °C (12 h light) for 6 monthsfollowed by 5 °C for 3 months were successful in overcomingseed dormancy. After 6 months of warm stratification, cytologicalchanges observed included: enlargement of the embryo; a decreasein the number of lipid bodies; appearance of ER; and increasesin mitochondria, plastids, dictyosomes, vacuoles and microbodiesin the shoot apical meristem. Cold stratification followingthe warm treatment induced cell division, and one or two distinctnucleoli in the shoot apical meristem cells were observed. Bothwarm and cold stratification reduced endogenous ABA concentrationsfrom the original 8888 pg per freshly harvested seed to 392and 536 pg, respectively. Treatment with exogenous gibberellinsafter seeds had been warm-stratified showed that GA4and GA7wereeffective at promoting seed germination, but GA3was not. Theseresults suggest that the strong seed dormancy ofT. maireicouldbe caused by a high ABA content and underdevelopment of theembryos in freshly shed seeds. We conclude that warm stratificationwith alternating temperatures increases the growth of embryosby cell expansion and enlargement and decreases ABA content,but seeds still remain ungerminated. Cold stratification mayinduce the response to GAs and initiate cell division resultingin release from physiological dormancy and subsequent germinationofT. maireiseeds.Copyright 1998 Annals of Botany Company Taxus mairei; ultrastructure; abscisic acid; gibberellin; seed dormancy; stratification; germination.  相似文献   

8.
Extracrts of the shoot tips of normal and ‘frenched’tobacco plants were chemically separated into acidic, neutral,and basic ether–soluble fractions. On chromatograms ofthese, some plant growth regulators were assayed using the Avenacoleoptile section extension test. The acidic auxins and an acids and a neutral growth inhibitorwere found. One auxin, with the samew RF value as indole-3-aceticacid, was four times more concentrated on normal as in ‘frenched’plants. No differences could be established between the twotypes of plants in regard to other growth regulators detected. It is argued that the symptoms of the physiological disease‘frenching’ could be explained in terms of a auxindeficiency.  相似文献   

9.
Impedance Spectroscopy in Frost Hardiness Evaluation of Rhododendron Leaves   总被引:5,自引:0,他引:5  
Impedance spectroscopy was used in studying frost hardinessof leaves of two diploid rhododendron cultivars, RhododendronL. ‘PJM’ and R. ‘Cunningham's White’,and their tetraploid derivatives, R. ‘Northern Starburst’(NSB) and CW4. After the growing season and initial hardeningin a greenhouse, plants were subjected to an acclimation regimein a phytotron: 3 consecutive weeks at +5, +1 and -2°C each.Hardiness was studied with controlled freezing tests beforeeach decrease in temperature and at the end of the experiment,based on data of extracellular resistance reand relaxation time of the frost-exposed leaves. The correlation of the two estimateswas 0.92. Generally, the diploid clones had better frost hardinessthan the tetraploid clones. At the end of the experiment, frosthardiness of the diploid ‘PJM’ was -28.7°C andthat of the tetraploid NSB -20.6°C. Leaves of the diploid‘Cunningham's White’ and of the tetraploid CW4 hardenedto -32.0°C and -20.9°C, respectively. Frost hardinessestimated by impedance spectroscopy correlated well with earlierresults based on visual scoring (r = 0.81–0.86) and electrolyteleakage tests (r = 0.84–0.90), but results from impedancespectroscopy indicated weaker hardiness than the other tests.The difference between the results from impedance spectroscopyand the other tests was smaller and more coherent within the‘Cunningham's White’ clones than within ‘PJM’and NSB. Changes in extracellular and intracellular resistanceof non-frozen leaves during the acclimation correlated withthe changes in frost hardiness of ‘Cunningham's White’clones, but not with those of ‘PJM’ and NSB, whichbelong to another subspecies.Copyright 2000 Annals of BotanyCompany Cold resistance, evergreen, frost hardiness, impedance spectroscopy, polyploid, Rhododendron, tetraploid  相似文献   

10.
A series of experiments was conducted to assess net CO2assimilationand growth responses to waterlogging of grafted and seedlingtrees in the genus Annona. Seedlings of A. glabra, A. muricataandA. squamosa L., and scions of ‘Gefner’ atemoya(A. squamosaxA. cherimola Mill.), ‘49-11’ (‘Gefner’atemoyaxA. reticulata L.), ‘4-5’ (‘Priestley’atemoyaxA. reticulata), A. reticulata grafted onto either A.glabra, A. reticulata orA. squamosa rootstocks were floodedfor up to 60 d. Soil anaerobiosis occurred on the third dayof flooding. Seedlings ofA. glabra and A. muricata, and thescions ‘49-11’, ‘Gefner’ atemoya, andA. reticulata grafted onto A. glabra rootstock were consideredflood tolerant based on their ability to survive and grow inflooded conditions. Scions of the normally flood-sensitive A.reticulata, ‘Gefner’ atemoya, and ‘49-11’tolerated root waterlogging when grafted onto the flood-tolerantspecies, A. glabra. In contrast, flooding of A. squamosa seedlingsand rootstocks, and A. reticulata rootstocks greatly reducedgrowth and net CO2assimilation rates, and resulted in 20–80%tree mortality. Stem anatomical responses to long-term flooding(12 continuous months) were assessed in seedlings of A. glabraand A. muricata, and trees of ‘49-11’ grafted ontoA. glabra. Flooded trees developed hypertrophied stem lenticels,particularly in A. glabra, and enlarged xylem cells resultingin thicker stems with reduced xylem density. Flooding did notincrease air spaces in pre-existing xylem near the pith or inxylem tissue that was formed during flooding. Thus, flood tolerancedid not involve aerenchyma formation in the stem. Copyright1999 Annals of Botany Company Flood tolerance, net CO2assimilation, photosynthesis, stem anatomy, shoot growth, anaerobiosis, Annonaceae.  相似文献   

11.
Background and Aims Summer dormancy in perennial grasseshas been studied inadequately, despite its potential to enhanceplant survival and persistence in Mediterranean areas. The aimof the present work was to characterize summer dormancy anddehydration tolerance in two cultivars of Dactylis glomerata(dormant ‘Kasbah’, non-dormant ‘Oasis’)and their hybrid using physiological indicators associated withthese traits. • Methods Dehydration tolerance was assessed in a glasshouseexperiment, while seasonal metabolic changes which produce putativeprotectants for drought, such as carbohydrates and dehydrinsthat might be associated with summer dormancy, were analysedin the field. • Key Results The genotypes differed in their ability tosurvive increasing soil water deficit: lethal soil water potential(s) was –3·4 MPa for ‘Kasbah’ (althoughnon-dormant), –1·3 MPa for ‘Oasis’,and –1·6 MPa for their hybrid. In contrast, lethalwater content of apices was similar for all genotypes (approx.0·45 g H2O g d. wt–1), and hence the greater survivalof ‘Kasbah’ can be ascribed to better drought avoidancerather than dehydration tolerance. In autumn-sown plants, ‘Kasbah’had greatest dormancy, the hybrid was intermediate and ‘Oasis’had none. The more dormant the genotype, the lower the metabolicactivity during summer, and the earlier the activity declinedin spring. Decreased monosaccharide content was an early indicatorof dormancy induction. Accumulation of dehydrins did not correlatewith stress tolerance, but dehydrin content was a function ofthe water status of the tissues, irrespective of the soil moisture.A protein of approx. 55 kDa occurred in leaf bases of the mostdormant cultivar even in winter. • Conclusions Drought avoidance and summer dormancy arecorrelated but can be independently expressed. These traitsare heritable, allowing selection in breeding programmes.  相似文献   

12.
The levels of purine and pyrimidine nucleotides in suspensioncultures of Catharanthus roseus were determined 24 h after stationary-phasecells were transferred to fresh complete (‘+Pi’)or phosphate-deficient (‘–Pi’) Murashige-Skoogmedium. The levels of ATP, GTP, UTP and CTP were from approx.3 to 5-fold greater in the cells grown in ‘+Pi’medium than in the cells grown in ‘–Pi’ medium.The levels of almost all other nucleotides were slightly higherin the cells in ‘+Pi’ medium. The rates of de novoand salvage biosynthesis of purine and pyrimidine nucleotideswere estimated from the rates of incorporation of radioactivityfrom [14C]formate, [2–14C]glycine, NaH14CO3, [6–14C]orotate,[8–14C]adenine, [8–14C]adenosine, [2–14C]uraciland [2–14C]uridine. The results indicated that the activityof both the de novo and the salvage pathway was higher in thecells in ‘+Pi’ medium than in the cells in ‘–Pi’medium. The rate of degradation estimated from the rate of releaseof 14CO2 from labelled purines and pyrimidines indicated thatdegradation of uridine was significantly reduced in the cellsin ‘+Pi’ medium, but no significant difference wasfound in the degradation of adenine, adenosine and uracil. Thepossible role of Pi in the control of the biosynthesis of nucleotidesand in the degradation of uridine is discussed. Catharanthus roseus, Madagascar periwinkle, suspension culture, inorganic phosphate, nucleotides, purines, pyrimidines, biosynthesis, degradation  相似文献   

13.
Abscisic acid (ABA) has been shown to increase freezing toleranceof bromegrass (Bromus in-ermis Leyss cv. Manchar) cell suspensioncultures from a LT50 (the temperature at which 50% cells werekilled) of –7 to – 30?C in 5 days at 23?C. Our objectivewas to study the qualitative changes in the translatable RNApopulation during ABA induced frost tolernace. In vitro translationproducts of poly(A)+ RNA isolated from bromegrass cells withor without 75 µM ABA treatment for various periods oftime were separated by 2D-PAGE and visualized by fluorography.SDS soluble proteins from the same treatments were also separatedby 20-PAGE. After 5 days treatment, at least 22 new or increasedabundance SDS soluble polypeptides were observed. From fluorographs,29 novel or increased abundance in vitro translation productscould be detected. The pattern of changes between ABA inducedSDS-soluble proteins and translation products from the 2D gelswere similar. A time course study (0–7 days) showed that17 of the 29 translation products were detected after 1 dayABA treatment, and at least 14 were present after 1 h. Coldtreatment (+4?C) induced fewer changes in the pool of translatableRNA than with ABA treatment. Three translation products inducedby cold appear to be similar to 3 of the ABA induced translationproducts. The majority of the ABA inducible translatable RNAsappeared at 10 µM or higher which coincides with the inductionof freezing tolerance. Many of these ABA inducible RNAs persisted7 days after ABA was removed from the media and correspondinglythe LT50 (–17?C) was still well above the control level(–17?C). The results suggest that ABA alters the poolof translatable RNAs during induction of freezing tolerancein bromegrass suspension culture cells. 1Oregon Agricultural Experiment Station Technical Paper No.9256. (Received August 3, 1990; Accepted October 18, 1990)  相似文献   

14.
The rate of indole-3-butyric acid (IBA) synthesis in maize seedlingsis dependent on the culture conditions of the plants. When theseedlings were grown on filter paper soaked with different amountsof water, the activity of IBA synthetase differed strongly.High amounts of water (150 and 200 ml per bowl) inhibited IBAsynthesis completely in vitro, whereas 30 and 50 ml water perbowl increased the activity dramatically. Under conditions whereIBA synthetase was inhibited (150 ml H2O), an increase of enzymeactivity was observed when abscisic acid (ABA) was exogenouslyadded in concentrations between 510–4 to 510–7M. Under ‘drought’ conditions (50 ml H2O per bowl)the same ABA concentrations were inhibitory. Jasmonic acid andsalicylic acid also enhanced IBA synthetase activity to someextent, whereas indole-3-acetic acid (IAA) and kinetin had noeffect. Activity could also be enhanced by osmotic stress (NaCIand sorbitol), but not under temperature stress. In accompanyinginvestigations the endogenous contents of IAA, IBA, and ABAunder the different culture conditions have been determinedas well as the energy charge of the seedlings. Similar observationshave been made with Amaranthus, wheat and pea seedlings Key words: Abscisic acid, Amaranthus paniculatus, drought stress, inole-3-butyric acid biosynthesis, Pisum sativum, Triticum aestivum, Zea mays  相似文献   

15.
ERRATA     
Effects of coupled solute and water flow in plant roots withspecial reference to Brouwer's experiment. Edwin L. Fiscus. p. 71 Abstract: Line 3 delete ‘interval’ insert‘internal’. p. 73 Materials and Methods: line 6: delete ‘diversion’ insert ‘division’ line 9 equation should read Jv=Lp PRT(C0C1). 74 Last line of figure legend: 10–1 should read 10–11. 75 Line 11: delete ‘seems’ insert ‘seem’. le 1 column heading—106 should read 1011. 77 delete ‘...membrane in series of...’ insert ‘membranein series or...’ Delete final paragraph.  相似文献   

16.
The effects of exposure of up to 2 h with sulphur dioxide ona range of plant species was observed by measuring changes inthe rate of net photosynthesis under closely controlled environmentalconditions. Ryegrass, Lolium perenne ‘S23’ was thespecies most sensitive to SO2; significant inhibition was detectedat 200 nl l–1. Fumigations at 300 nl l–1 also inhibitedphotosynthesis in field bean (Vicia faba cv. ‘Three FoldWhite’ and ‘Blaze’) and in barley (Hordeumvulgare cv. ‘Sonja’). No effect was detected inwheat (Triticum aestivum cv. ‘Virtue’) at concentrationsup to 600 nl l–1 SO2, or in oil-seed rape (Brassica napuscv. ‘Rafal’) except at 800 nl l–1 SO2). Recoverycommenced immediately after the fumigation was terminated andwas complete within 2 h when inhibition had not exceeded 20%during the SO2 treatment. Key words: Sulphur dioxide, short-term fumigation, photosynthesis  相似文献   

17.
ROBSON  M. J. 《Annals of botany》1982,49(3):321-329
Simulated swards of each of two selection lines of Lolium perennecv. S23 with ‘fast’ and ‘slow’ ratesof ‘mature tissue’ respiration were establishedin growth rooms at 20/15 °C day/night temperatures and studiedover four successive regrowth periods of 46, 30, 26 and 53 daysduration. The ‘slow’ line outyielded the ‘fast’,both in harvestable shoot (above a 5 cm cut) and in root andstubble. Its advantage increased over successive regrowth periodsto 23 per cent (total biomass). Gas analysis measurements onthe entire communities (including roots), during the final regrowthperiod, showed that the ‘slow’ line had a 22–34per cent lower rate of dark respiration per unit dry weight.This enabled it to maintain its greater mass of tissue for thesame cost in terms of CO2 efflux per unit ground area. Halfthe extra dry weight produced by the ‘slow’ line,relative to the ‘fast’, could be attributed to itsmore economic use of carbon. The rest could be traced to a 25per cent greater tiller number which enabled the ‘slow’line to expand leaf area faster (though not at a greater rateper tiller), intercept more light and fix more carbon, earlyin the regrowth period. Lolium perenne L., ryegrass, respiration, maintenance respiration, tiller production, simulated swards, canopy photosynthesis, carbon economy  相似文献   

18.
Changes in freezing tolerance of winter rye (Secale cerealeL. cv. Voima) were determined for leaf tissues during a 1-weekcold stress, which was performed by transferring the 7-d-oldseedlings from a greenhouse (25°C, long day) to 3°Cand short day conditions. The development of cold hardeningwas shown by using an ion leakage test and by determining theamounts of carbohydrates, soluble proteins and RNA. The firstevidence of the development of freezing resistance was foundafter 1 d at low temperature, i.e. an LT50 value increased from-5 to -7°C. Plants cold treated for 7 d reached an LT50value of -9°C. This increase in freezing tolerance was foundto be associated with the increased levels of soluble carbohydrates,total RNA and soluble proteins. These metabolic changes indicatethe association with adjustment of growth and cell metabolismto low temperatures at the beginning of cold acclimation ofwinter rye.Copyright 1994, 1999 Academic Press Secale cereale L., winter rye, cold stress, proteins, RNA, sugars  相似文献   

19.
ERRATA     
On page 235, Table I: Equation (1) for Node 4 should read ‘A/Ac=0·840+0·0006Ac;Equation (2) for Node 4 should read ‘A=0·89Ac’and Equation (2) for Node 5–10 should read ‘A=0·813Ac’.  相似文献   

20.
Cold hardiness in actively growing plants of Saxifraga caespitosaL., an arctic and subarctic cushion plant, was examined. Plantscollected from subarctic and arctic sites were cultivated ina phytotron at temperatures of 3, 9, 12 and 21 °C undera 24-h photoperiod, and examined for freezing tolerance usingcontrolled freezing at a cooling rate of 3–4 °C eitherin air or in moist sand. Post-freezing injury was assessed byvisual inspection and with chlorophyll fluorescence, which appearedto be well suited for the evaluation of injury in Saxifragaleaves. Freezing of excised leaves in moist sand distinguishedwell among the various treatments, but the differences werepartly masked by significant supercooling when the tissue wasfrozen in air. Excised leaves, meristems, stem tissue and flowerssupercooled to –9 to –15 °C, but in rosettesand in intact plants ice nucleation was initiated at –4to –7 °C. The arctic plants tended to be more coldhardy than the subarctic plants, but in plants from both locationscold hardiness increased significantly with decreasing growthtemperature. Plants grown at 12 °C or less developed resistanceto freezing, and excised leaves of arctic Saxifraga grown at3 °C survived temperatures down to about –20 °C.Exposure to –3 °C temperature for up to 5 d did notsignificantly enhance the hardiness obtained at 3 °C. Whenwhole plants of arctic Saxifraga were frozen, with roots protectedfrom freezing, they survived –15 °C and –25°C when cultivated at 12 and 3 °C, respectively, althougha high percentage of the leaves were killed. The basal levelof freezing tolerance maintained in these plants throughoutperiods of active growth may have adaptive significance in subarcticand arctic environments. Saxifraga caespitosa L., arctic, chlorophyll fluorescence, cold acclimation, cushion plant, freezing stress, freezing tolerance, ice nucleation, supercooling  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号