共查询到19条相似文献,搜索用时 46 毫秒
1.
以厦门白城海域的潮间带表面沉积物为菌种来源筛选得到一株具有电催化活性的菌株S2,该菌株的16S rRNA和gyrB基因发育树与Shewanella oneidensis MR-1同支,相似性分别为98.5%和87%,葡萄糖、木糖、半乳糖等碳源利用及最佳生长的NaCl浓度与S.oneidensis MR-1有显著差别,因此初步鉴定为Shewanella属菌株,命名为Shewanella sp.S2。初步研究了菌株S2产电活性,在以乳酸作为碳源产电时,电压最高为150mV,相应的电流密度为66.1mA/m2。 相似文献
2.
采用循环伏安法对从湖南省吉首大田湾污水处理厂曝气池活性污泥中富集和筛选的37株产电菌的电化学活性进行考察。结果发现,4株菌株(F012、F015、F021、F026)的电化学活性较为显著,其中F026的电化学活性最好。对4株产电菌的系统发育分析表明,菌株F012属于Dyella属,与Dyella marensis CS5-B2T系统发育关系最为密切(相似性为97.22%);菌株F015属于Paludibacterium属,与该属的Paludibacterium yongneupense 5YN8-15T系统发育关系最为密切(相似性为97.70%);菌株F021和F026都属于Pseudomonas属,分别与该属的Pseudomonas simiae OLiT和Pseudomonas otitidis MCC10330T系统发育关系最为密切(相似性分别为99.60%和98.62%)。生物学特性研究表明,电化学活性最好的产电菌F026的生长温度范围为20~40 ℃,最适宜生长温度为30~35 ℃;生长pH范围为5~9,最适pH生长范围为8~9,适合作为微生物燃料电池的高效产电菌。 相似文献
3.
【背景】产电微生物的种类和电化学活性机制对微生物燃料电池的产电性能有着重要的影响。【目的】从海水中分离获得一株耐盐产电微生物,研究其产电特性并鉴定种属信息。【方法】以取自南海的海水为接种液启动并运行阳极液中含有不同盐浓度的微生物燃料电池,从富集的阳极生物膜上分离得到一株纯培养的微生物菌株,命名为E-1。通过接种于阳极液中添加不同盐浓度的微生物燃料电池中对其产电特性进行分析,并利用形态学观察、Biolog分析和16SrRNA基因序列比对相结合的方法进行种属鉴定。【结果】菌株E-1在无外源添加和外源添加6.6%NaCl条件下产生的功率密度分别为51.69 m W/m2和26.56 m W/m2,这与其良好的耐盐能力相关。菌株E-1被鉴定为海藻希瓦氏菌(Shewanella algae),表现出多样的底物利用能力,生长的温度范围为25-40°C,pH范围为5.0-10.0。【结论】这是首次对Shewanella algae种内微生物产电性能及其在微生物燃料电池中应用的报道,丰富了产电微生物的多样性,菌株E-1能够在较高盐浓度条件下表现出良好的产电性能,为微生物燃料电池在海水资源化处理方面的应... 相似文献
4.
基于微生物燃料电池的反应装置,从污水处理厂曝气池的污泥中通过富集,筛选和基于16S rRNA基因序列的系统发育分析等手段驯化出1株高效产电假单胞菌F026。以F026为阳极产电菌制作微生物燃料电池,考察了底物种类、温度和p H值等因素对微生物燃料电池产电性能的影响。结果表明,F026最适合在以可溶性淀粉为底物,p H为中性偏碱性,温度在30~35℃的环境下生长。在此条件下,微生物燃料电池的最高电压达到500 m V,体积功率密度达到2 W/m3。 相似文献
5.
对污水处理厂曝气池的产电微生物进行富集并利用纯培养法筛选,采用基于16S rRNA基因序列的系统发育分析方法研究了产电微生物的生物多样性,并基于三电极体系绘制出的循环伏安曲线鉴别出产电性能较强的纯菌株。结果表明,菌株F003、F042和F050与其系统发育关系最密切的有效发表种的典型菌株的16S rRNA基因序列存在较大差异,分别代表新的分类单元。之后又对所获得的38株菌株进行电化学测试活性,得出4株活性较强的菌株,其中菌株F010和F017的电化学活性比菌株F007和F051更为显著。 相似文献
6.
新型产电微生物(Electricigens)的发现,使得微生物燃料电池概念的内涵发生了根本性的变化,展现了广阔的应用前景。这种微生物能够以电极作为唯一电子受体,把氧化有机物获得的电子通过电子传递链传递到电极产生电流,同时微生物从中获得能量而生长。这种代谢被认为是一种新型微生物呼吸方式。以这种新型微生物呼吸方式为基础的微生物燃料电池可以同时进行废水处理和生物发电,有望可以把废水处理发展成一个有利可图的产业,是MFC最有发展前景的方向。 相似文献
7.
8.
微生物燃料电池(Microbial fuel cell,MFC)作为一种生物电化学装置,在可再生能源生产和废水处理方面的巨大潜力已引起广泛关注。然而MFC面临输出功率低、欧姆内阻高以及启动时间长等问题,极大限制了其在实际工程中的应用。MFC中阳极是微生物附着的载体,对电子的产生及传递起着关键作用,开发优质的生物电极已发展成为改善MFC性能的有效途径。共轭聚合物具有成本低、电导率高、化学稳定性及生物相容性好等优点,利用共轭聚合物修饰生物电极结构,可以实现大比表面积、缩短电荷转移路径,从而实现高效生物电化学性能。同时,纳米级共轭聚合物包覆细菌,可以使细菌产生的电子有效地传递到电极。文中综述了最近报道的共轭聚合物在MFC中的应用,重点介绍了共轭聚合物修饰的MFC阳极,系统分析了共轭聚合物的优点及局限性,以及这些高效复合生物电极如何解决MFC应用中存在的低输出功率、高欧姆内阻及长启动时间等问题。 相似文献
9.
10.
11.
Patrick D. KielyRoland Cusick Douglas F. CallPriscilla A. Selembo John M. ReganBruce E. Logan 《Bioresource technology》2011,102(1):388-394
Conditions in microbial fuel cells (MFCs) differ from those in microbial electrolysis cells (MECs) due to the intrusion of oxygen through the cathode and the release of H2 gas into solution. Based on 16S rRNA gene clone libraries, anode communities in reactors fed acetic acid decreased in species richness and diversity, and increased in numbers of Geobacter sulfurreducens, when reactors were shifted from MFCs to MECs. With a complex source of organic matter (potato wastewater), the proportion of Geobacteraceae remained constant when MFCs were converted into MECs, but the percentage of clones belonging to G. sulfurreducens decreased and the percentage of G. metallireducens clones increased. A dairy manure wastewater-fed MFC produced little power, and had more diverse microbial communities, but did not generate current in an MEC. These results show changes in Geobacter species in response to the MEC environment and that higher species diversity is not correlated with current. 相似文献
12.
Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode 总被引:1,自引:0,他引:1
Microbial desalination cells (MDCs) hold great promise for drinking water production because of potential energy savings during the desalination process. In this study, we developed a continuously operated MDC - upflow microbial desalination cell (UMDC) for the purpose of salt removal. During the 4-month operation, the UMDC constantly removed salts and generated bio-electricity. At a hydraulic retention time (HRT) of 4 days (salt solution) and current production of ∼62 mA, the UMDC was able to remove more than 99% of NaCl from the salt solution that had an initial salt concentration of 30 g total dissolved solids (TDS)/L. In addition, the TDS removal rate was 7.50 g TDS L−1 d−1 (salt solution volume) or 5.25 g TDS L−1 d−1 (wastewater volume), and the desalinated water met the drinking water standard, in terms of TDS concentration. A high charge transfer efficiency of 98.6% or 81% was achieved at HRT 1 or 4 d. The UMDC produced a maximum power density of 30.8 W/m3. The phenomena of bipolar electrodialysis and proton transport in the UMDC were discussed. These results demonstrated the potential of the UMDC as either a sole desalination process or a pre-desalination reactor for downstream desalination processes. 相似文献
13.
Jia YH Tran HT Kim DH Oh SJ Park DH Zhang RH Ahn DH 《Bioprocess and biosystems engineering》2008,31(4):315-321
Simultaneous organics removal and bio-electrochemical denitrification using a microbial fuel cell (MFC) reactor were investigated in this study. The electrons produced as a result of the microbial oxidation of glucose in the anodic chamber were transferred to the anode, which then flowed to the cathode in the cathodic chamber through a wire, where microorganisms used the transferred electrons to reduce the nitrate. The highest power output obtained on the MFCs was 1.7 mW/m(2) at a current density of 15 mA/m(2). The maximum volumetric nitrate removal rate was 0.084 mg NO(3)(-)-N cm(-2) (electrode surface area) day(-1). The coulombic efficiency was about 7%, which demonstrated that a substantial fraction of substrate was lost without current generation. 相似文献
14.
An integrated photo-bioelectrochemical (IPB) system uses microalgae in the cathode of a microbial fuel cell to achieve higher electricity generation and nutrient removal from wastewater. Using multivariate analysis and surveys of IPB studies, this paper identifies key algal and bacterial taxa and discusses their functions critical for IPB performance. Unicellular algae with high photosynthetic oxygen production and biofilm formation can enhance IPB energy production. Diverse bacterial taxa achieve nitrogen transformations and can improve total nitrogen removal. Understanding bacteria–algae interactions via quorum sensing in the IPB cathode may potentially aid in boosting system performance. Future advances in development of IPBs for wastewater treatment will benefit from interdisciplinary collaboration in analysis of microbial community functions. 相似文献
15.
Challenges in microbial fuel cell development and operation 总被引:3,自引:0,他引:3
A microbial fuel cell (MFC) is a device that converts chemical energy into electricity through the catalytic activities of
microorganisms. Although there is great potential of MFCs as an alternative energy source, novel wastewater treatment process,
and biosensor for oxygen and pollutants, extensive optimization is required to exploit the maximum microbial potential. In
this article, the main limiting factors of MFC operation are identified and suggestions are made to improve performance. 相似文献
16.
Electricity generation and microbial community changes in microbial fuel cells packed with different anodic materials 总被引:3,自引:0,他引:3
Four materials, carbon felt cube (CFC), granular graphite (GG), granular activated carbon (GAC) and granular semicoke (GS) were tested as packed anodic materials to seek a potentially practical material for microbial fuel cells (MFCs). The microbial community and its correlation with the electricity generation performance of MFCs were explored. The maximum power density was found in GAC, followed by CFC, GG and GS. In GAC and CFC packed MFCs, Geobacter was the dominating genus, while Azospira was the most populous group in GG. Results further indicated that GAC was the most favorable for Geobacter adherence and growth, and the maximum power densities had positive correlation with the total biomass and the relative abundance of Geobacter, but without apparent correlation with the microbial diversity. Due to the low content of Geobacter in GS, power generated in this system may be attributed to other microorganisms such as Synergistes, Bacteroidetes and Castellaniella. 相似文献
17.
Composition and distribution of internal resistance in three types of microbial fuel cells 总被引:3,自引:0,他引:3
High internal resistance is a key problem limiting the power output of the microbial fuel cell (MFC). Therefore, more knowledge
about the internal resistance is essential to enhance the performance of the MFC. However, different methods are used to determine
the internal resistance, which makes the comparison difficult. In this study, three different types of MFCs were constructed
to study the composition and distribution of internal resistance. The internal resistance (R
i) is partitioned into anodic resistance (R
a), cathodic resistance (R
c), and ohmic resistance () according to their origin and the design of the MFCs. These three resistances were then evaluated by the “current interrupt”
method and the “steady discharging” method based on the proposed equivalent circuits for MFCs. In MFC-A, MFC-B, and MFC-C,
the R
i values were 3.17, 0.35, and 0.076 Ω m2, the values were 2.65, 0.085, and 0.008 Ω m2, the R
a values were 0.055, 0.115, and 0.034 Ω m2, and the R
c values were 0.466, 0.15, and 0.033 Ω m2, respectively. For MFC-B and MFC-C, the remarkable decrease in R
i compared with the two-chamber MFC was mainly ascribed to the decline in and R
c. In MFC-C, the membrane electrodes’ assembly lowered the ohmic resistance and facilitated the mass transport through the
anode and cathode electrodes, resulting in the lowest R
i among the three types. 相似文献
18.
A comprehensive review of microbial electrochemical systems as a platform technology 总被引:1,自引:0,他引:1
Microbial electrochemical systems (MESs) use microorganisms to covert the chemical energy stored in biodegradable materials to direct electric current and chemicals. Compared to traditional treatment-focused, energy-intensive environmental technologies, this emerging technology offers a new and transformative solution for integrated waste treatment and energy and resource recovery, because it offers a flexible platform for both oxidation and reduction reaction oriented processes. All MESs share one common principle in the anode chamber, in which biodegradable substrates, such as waste materials, are oxidized and generate electrical current. In contrast, a great variety of applications have been developed by utilizing this in situ current, such as direct power generation (microbial fuel cells, MFCs), chemical production (microbial electrolysis cells, MECs; microbial electrosynthesis, MES), or water desalination (microbial desalination cells, MDCs). Different from previous reviews that either focus on one function or a specific application aspect, this article provides a comprehensive and quantitative review of all the different functions or system constructions with different acronyms developed so far from the MES platform and summarizes nearly 50 corresponding systems to date. It also provides discussions on the future development of this promising yet early-stage technology. 相似文献
19.
Olivier Lefebvre Wai K. Ooi Zhe Tang Md. Abdullah-Al-Mamun Daniel H.C. Chua How Y. Ng 《Bioresource technology》2009,100(20):4907-4910
Microbial fuel cells (MFCs) are considered as a promising way for the direct extraction of biochemical energy from biomass into electricity. However, scaling up the process for practical applications and mainly for wastewater treatment is an issue because there is a necessity to get rid of unsustainable platinum (Pt) catalyst. In this study, we developed a low-cost cathode for a MFC making use of sputter-deposited cobalt (Co) as the catalyst and different types of cathode architecture were tested in a single-chambered air-cathode MFC. By sputtering the catalyst on the air-side of the cathode, increased contact with ambient oxygen significantly resulted in higher electricity generation. This outcome was different from previous studies using conventionally-coated Pt cathodes, which was due to the different technology used. 相似文献