首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
为了解荷木对土壤水分利用的干湿季差异,利用热消散探针法(TDP)连续监测荷木(Schima superba)液流密度(Js),基于测定的叶片水势(Ψ_L)、叶面积指数(LAI)及胡伯尔值(A_S∶A_L)等参数,结合同步监测的环境因子,分析整树水力导度(K_L)、冠层气孔导度(GS)和蒸腾有效储存水量(Q)的干湿季变化。结果表明,干季荷木林出现土壤水分亏缺,使荷木对水分吸收和传输的阻力增加。但G_S对水汽压亏缺(VPD)的敏感性较高,使干湿季正午叶片水势(Ψ_(L-mid))、土壤-叶片水势差(ΔΨ_(S-L))保持相对稳定;干季荷木通过降低LAI、K_L和G_S有效调控蒸腾;增加Q对日蒸腾的贡献率及单位叶面积的Q以部分补偿水分胁迫。这些适应性调节使荷木在光热资源仍然充足的干季保持旺盛的蒸腾活动,维持与湿季相似的单位叶面积蒸腾量。因此,K_L和G_S的调节作用、Q的水力补偿效应以及自身水力特征在一定程度上解释了荷木干湿季单位叶面积的水分利用呈常数状态,并且SWC对蒸腾无明显的限制作用的原因。  相似文献   

2.
运用Granier热消散探针连续监测荷木的树干液流,于2009年的湿季(8月)和干季(11月)选择天气晴朗的3d测定叶片水势,同步连续监测林冠上方光合有效辐射、土壤含水量、气温和空气相对湿度.结果表明:干湿季下荷木树干液流存在显著差异,此外,土壤水势和液流有较好的相关性,且干季时的相关性更好;荷木的叶面积/边材面积比值平均为(0.416±0.033)m2·cm-2,并与树高呈指数函数下降关系;随着11月土壤水势下降,荷木的整树水力导度和午间叶片水势也有所下降,但不明显;对叶片水势和整树蒸腾进行回归分析,二者之间呈二次多项式关系(P<0.01),叶片水势并非无限制下降;结果还表明,大气水汽压亏缺(D)和叶片水势呈负相关,这是否空气温度和相对湿度或共同作用影响叶片水势,需要进一步研究.  相似文献   

3.
华南地区裸子植物与被子植物季节性水分利用的比较研究   总被引:1,自引:0,他引:1  
为了解气候温暖区的裸子植物与被子植物的水分利用异同,利用Granier热消散探针法(TDP)连续监测华南地区裸子植物池杉(Taxodium ascendens)、落羽杉(T. distichum)和被子植物枫香树(Liquidambar formosana)、乐昌含笑(Michelia chapensis)的树干液流,对干湿季裸子植物与被子植物水分利用的差异及其与环境因子的关系进行了研究。结果表明,光合有效辐射和水汽压亏缺与树木的整树蒸腾速率和整树日均耗水量呈显著正相关;干季池杉和落羽杉的整树蒸腾速率与整树水力导度均显著低于枫香树和乐昌含笑;而在湿季则正好相反。这为华南地区园林造景和养护管理提供了科学依据。  相似文献   

4.
华南荷木林冠层气孔导度对水汽压亏缺的响应   总被引:1,自引:0,他引:1  
冠层气孔导度(Gs)是量化气孔在冠层尺度水平上表现的参数,能够表征森林冠层表面水汽和能量交换的动态.本研究利用Granier树干液流测定系统,连续监测华南地区荷木林的树干液流,通过尺度转换和扩展获得冠层蒸腾速率,结合微气象观测值,以Pen-man-Monteith公式计算了Gs,并比较不同土壤水分条件下Gs对水汽压亏缺的响应.结果显示,Gs与气孔气体交换方法实测的叶片气孔导度(gs)日变化相似,单位转换数值大小与实测gs数量级一致.Gs对水汽压亏缺的响应在干季和湿季有明显差别:(1)在土壤水分充足的湿季(土壤含水量θ >33%),Gs对水汽压亏缺的响应更敏感(偏相关系数-0.316),而在干季(θ<23%)则对光合有效辐射的响应更敏感(偏相关系数0.885).(2)荷木林冠层-大气脱耦联系数(Ω)在湿季接近l,干季则较湿季小,说明湿季叶片的界面层较厚,水汽压亏缺对Gs影响较小,而光合有效辐射是控制Gs的主要环境因子.  相似文献   

5.
不同径级马占相思(Acacia mangium)整树蒸腾的湿、干季变化   总被引:3,自引:0,他引:3  
利用Granier树干液流测定系统对广东鹤山丘陵地马占相思(Acacia mangium)林进行长期监测,并同步监测环境因子(空气温度、相对湿度、光合有效辐射、土壤体积含水量),选择胸径具有代表性的样树,结合马占相思的形态学参数,计算马占相思的整树蒸腾.通过对光合有效辐射(PAR)分级,建立不同辐射强度等级的湿季(土壤水分θ≥33%)整树蒸腾与水汽压亏缺(VPD)的相关方程,以干季(θ≤24%)的VPD代入对应PAR等级的湿季的拟合方程,求出干季的潜在蒸腾,以潜在蒸腾和干季实际蒸腾之差分析不同径级整树蒸腾在不同季节的实际变化.在所有的PAR分级内,干季整树蒸腾显著低于湿季,仅占湿季蒸腾的10%~20%,就蒸腾减少的绝对量而言,优势木>中间木>劣势木.土壤水分下降缩小了不同径级树木之间液流密度的差异,土壤水分亏缺限制了树木的蒸腾,对马占相思的生长造成一定程度的水分胁迫.  相似文献   

6.
许文滔  赵平  王权  饶兴权  蔡锡安  曾小平 《生态学报》2007,27(10):4122-4131
为深入揭示华南地区马占相思冠层气孔导度对环境因子的响应规律,在2005年7月至11月,利用Granier热消散式探针法对马占相思(Acacia mangium)的树干液流(sapflow)进行了连续测定,计算出整树的蒸腾,并由Penman-Monteith方程得出马占相思的冠层气孔导度值。通过分析,发现:马占相思冠层气孔导度是控制马占相思树整树蒸腾的主要因素;冠层气孔导度随着水汽压亏缺增加呈负指数函数下降的趋势。使用包括了太阳总辐射、水汽压亏缺和气温的Jarvis模型可以较好地模拟马占相思冠层气孔导度对环境因子的响应特征;模拟结果表明:环境变量对模型精确度的影响程度依次为:水汽压亏缺>太阳总辐射>气温。  相似文献   

7.
整树水力导度协同冠层气孔导度调节森林蒸腾   总被引:7,自引:2,他引:5  
赵平 《生态学报》2011,31(4):1164-1173
冠层气孔导度决定森林的蒸腾效率,它对驱动水汽移动的水汽应力的响应受树木水力结构的影响,并随水汽压亏缺上升和水力导度下降而降低,维持水势在最低阈值之上,避免出现水力灾变,调控冠层蒸腾。由于叶形和树冠结构的特点,部分脱耦联反映了湿润地区阔叶林冠层与大气的水汽交换特征,单纯以气孔导度的变化难以完整描述水分通量的调节规律,因而,需要考虑冠层气孔导度与水力导度协同控制冠层蒸腾的潜在机理。通过整合叶片气孔气体交换、树干液流、冠层微气象和其他环境因子的野外观测值,估测不同时间尺度的森林冠层气孔导度与大气的脱耦联系数和变异范围,以基于树干液流的冠层蒸腾,结合叶片/土壤水势梯度计算的水力导度,分析水力导度影响冠层气孔导度响应水汽压亏缺的敏感性,可以揭示和阐明水力导度和冠层气孔导度联合调节森林蒸腾的机理,对准确估测全球变化背景下森林对水资源利用的潜在生态效应有明显的理论意义。  相似文献   

8.
许文滔  赵平  王权  饶兴权  蔡锡安  曾小平 《生态学报》2007,27(10):4122-4131
为深入揭示华南地区马占相思冠层气孔导度对环境因子的响应规律,在2005年7月至11月,利用Granier热消散式探针法对马占相思(Acacia mangium)的树干液流(sap flow)进行了连续测定,计算出整树的蒸腾,并由Penman-Monteith方程得出马占相思的冠层气孔导度值。通过分析,发现:马占相思冠层气孔导度是控制马占相思树整树蒸腾的主要因素;冠层气孔导度随着水汽压亏缺增加呈负指数函数下降的趋势。使用包括了太阳总辐射、水汽压亏缺和气温的Jarvis模型可以较好地模拟马占相思冠层气孔导度对环境因子的响应特征;模拟结果表明:环境变量对模型精确度的影响程度依次为:水汽压亏缺>太阳总辐射>气温。  相似文献   

9.
应用Granier热消散探针测定华南丘陵马占相思的树干液流,将液流与对应的光合有效辐射和水汽压亏缺数据列分别进行逐行错位分析和时间序列分析,探讨树干液流与蒸腾驱动因子之间的时滞效应,并对结果进行互相验证.结果表明:马占相思树木蒸腾主要驱动因子是光合有效辐射和水汽压亏缺,树干液流的变化更多地依赖光合有效辐射的变化,而且干季的依赖性比湿季更强;无论是干季还是湿季,树干液流都滞后于光合有效辐射,提前于水汽压亏缺;时滞效应季节差异显著;不同径级马占相思的时滞效应差异不显著;树高、胸径、冠幅并不能解释树干液流与光合有效辐射、水汽压亏缺之间的时滞效应;干季树干液流与水汽压亏缺之间的时滞效应与夜间水分补充量显著相关,湿季则相反.  相似文献   

10.
应用Granier热消散探针,长期监测华南地区荷木、大叶相思和柠檬桉林不同径级样树的树干液流,结合同步观测的气象数据,求算冠层气孔导度(gc),并分析其对环境因子的响应方式及敏感性.结果表明: 不同季节荷木林日间平均gc显著高于大叶相思和柠檬桉(P<0.05)(除3月外).在干季和湿季,gc与光合有效辐射(PAR)呈现对数正相关关系(P<0.001),湿季gc对PAR响应比干季更敏感.gc与水汽压亏缺(VPD)在干湿季均呈现对数负相关关系(P<0.001),同样在湿季表现出更高的敏感性.湿季gc与VPD的偏相关系数高于干季,VPD对气孔行为的调控作用在湿季更为明显.随着土壤含水量的降低,gc对VPD的敏感性下降,荷木和柠檬桉林下降的幅度大于大叶相思林,荷木和柠檬桉林下降的幅度相当.通过综合分析gc对环境因子(PAR和VPD)的敏感性及其对土壤含水量变化的响应规律,发现乡土树种荷木作为植被恢复树种比外来引种的大叶相思和柠檬桉更为适宜.  相似文献   

11.
Background and AimsLeaf biomechanical resistance protects leaves from biotic and abiotic damage. Previous studies have revealed that enhancing leaf biomechanical resistance is costly for plant species and leads to an increase in leaf drought tolerance. We thus predicted that there is a functional correlation between leaf hydraulic safety and biomechanical characteristics.MethodsWe measured leaf morphological and anatomical traits, pressure–volume parameters, maximum leaf hydraulic conductance (Kleaf-max), leaf water potential at 50 % loss of hydraulic conductance (P50leaf), leaf hydraulic safety margin (SMleaf), and leaf force to tear (Ft) and punch (Fp) of 30 co-occurring woody species in a sub-tropical evergreen broadleaved forest. Linear regression analysis was performed to examine the relationships between biomechanical resistance and other leaf hydraulic traits.Key ResultsWe found that higher Ft and Fp values were significantly associated with a lower (more negative) P50leaf and a larger SMleaf, thereby confirming the correlation between leaf biomechanical resistance and hydraulic safety. However, leaf biomechanical resistance showed no correlation with Kleaf-max, although it was significantly and negatively correlated with leaf outside-xylem hydraulic conductance. In addition, we also found that there was a significant correlation between biomechanical resistance and the modulus of elasticity by excluding an outlier.ConclusionsThe findings of this study reveal leaf biomechanical–hydraulic safety correlation in sub-tropical woody species.  相似文献   

12.
The degree of plant iso/anisohydry, a widely used framework for classifying species‐specific hydraulic strategies, integrates multiple components of the whole‐plant hydraulic pathway. However, little is known about how it associates with coordination of functional and structural traits within and across different organs. We examined stem and leaf hydraulic capacitance and conductivity/conductance, stem xylem anatomical features, stomatal regulation of daily minimum leaf and stem water potential (Ψ), and the kinetics of stomatal responses to vapour pressure deficit (VPD) in six diverse woody species differing markedly in their degree of iso/anisohydry. At the stem level, more anisohydric species had higher wood density and lower native capacitance and conductivity. Like stems, leaves of more anisohydric species had lower hydraulic conductance; however, unlike stems, their leaves had higher native capacitance at their daily minimum values of leaf Ψ. Moreover, rates of VPD‐induced stomatal closure were related to intrinsic rather than native leaf capacitance and were not associated with species' degree of iso/anisohydry. Our results suggest a trade‐off between hydraulic storage and efficiency in the leaf, but a coordination between hydraulic storage and efficiency in the stem along a spectrum of plant iso/anisohydry.  相似文献   

13.
树木叶片的水力效率和安全性会对水分条件的改变做出一定的响应, 进而影响树木的生长和分布, 然而叶导水率(Kleaf)和叶水力脆弱性(P50)对不同水分条件的响应模式及其影响因素尚不清楚。该研究选取了晋西北关帝山和黑茶山两种水分条件下的8种树种, 测量其水力性状、叶片导管和形态性状, 比较两地不同树种的KleafP50的变化, 分析叶片水力效率和安全性之间的权衡关系, 并探讨叶片水力性状在不同树种及水分条件下的响应模式及其驱动因素。结果表明: 对同一树种而言, 湿润的关帝山叶最大导水率(Kmax)和P50均高于干旱的黑茶山; 对同一地区而言, 从在高水分条件下生长的树种到在易干旱环境生长的树种, KmaxP50均逐渐下降。KmaxP50、膨压丧失点水势(TLP)之间均存在显著相关关系。两地叶片P50与导管密度、导管塌陷预测值((t/b)3)、叶片厚度、比叶质量显著正相关, 与导管直径、叶面积显著负相关, 不同树种的KleafP50与叶导管性状的关系大于叶形态性状。同一树种的关帝山到黑茶山P50变化量(δP50)与比叶质量和叶干物质含量在两地的变化量显著正相关, 同一树种δP50与叶形态性状变化量的关系大于与叶导管性状的。以上结果表明: 随着水分条件变差, 叶片水力效率降低, 水力安全性提高, 不同树种叶片水力效率与安全性之间存在一定的权衡关系, 不同树种叶水力性状的差别受叶导管性状影响的程度大于受叶形态性状的影响, 同一树种叶水力安全性对水分条件变化的响应主要依靠叶形态性状的驱动, 树木在提高自身叶水力安全的同时增加了叶构建的碳投资。  相似文献   

14.
Hydraulic redistribution (HR) of water from moist to drier soils, through plant roots, occurs world‐wide in seasonally dry ecosystems. Although the influence of HR on landscape hydrology and plant water use has been amply demonstrated, HR's effects on microbe‐controlled processes sensitive to soil moisture, including carbon and nutrient cycling at ecosystem scales, remain difficult to observe in the field and have not been integrated into a predictive framework. We incorporated a representation of HR into the Community Land Model (CLM4.5) and found the new model improved predictions of water, energy, and system‐scale carbon fluxes observed by eddy covariance at four seasonally dry yet ecologically diverse temperate and tropical AmeriFlux sites. Modeled plant productivity and microbial activities were differentially stimulated by upward HR, resulting at times in increased plant demand outstripping increased nutrient supply. Modeled plant productivity and microbial activities were diminished by downward HR. Overall, inclusion of HR tended to increase modeled annual ecosystem uptake of CO2 (or reduce annual CO2 release to the atmosphere). Moreover, engagement of CLM4.5′s ground‐truthed fire module indicated that though HR increased modeled fuel load at all four sites, upward HR also moistened surface soil and hydrated vegetation sufficiently to limit the modeled spread of dry season fire and concomitant very large CO2 emissions to the atmosphere. Historically, fire has been a dominant ecological force in many seasonally dry ecosystems, and intensification of soil drought and altered precipitation regimes are expected for seasonally dry ecosystems in the future. HR may play an increasingly important role mitigating development of extreme soil water potential gradients and associated limitations on plant and soil microbial activities, and may inhibit the spread of fire in seasonally dry ecosystems.  相似文献   

15.
Transverse hydraulic redistribution by a grapevine   总被引:4,自引:0,他引:4  
Root hydraulic redistribution has been shown to occur in numerous plant species under both field and laboratory conditions. To date, such water redistribution has been demonstrated in two fundamental ways, either lifting water from deep edaphic sources to dry surface soils or redistributing water downward (reverse flow) when inverted soil Ψs gradients exist. The importance of hydraulic redistribution is not well documented in agricultural ecosystems under field conditions, and would be important because water availability can be temporally and spatially constrained. Herein we report that a North American grapevine hybrid (Vitis riparia × V. berlandieri cv 420 A) growing in an agricultural ecosystem can redistribute water from a restricted zone of available water under a drip irrigation emitter, laterally across the high resistance pathways of the trunk and into roots and soils on the non-irrigated side. Deuterium-labelled water was used to demonstrate lateral movement across the vine's trunk and reverse flow into roots. Water redistribution from the zone of available water and into roots distant from the source occurred within a relatively short time frame of 36 h, although overnight deposition into rhizosphere soils around the roots was not detected. Deuterium was eventually detected in rhizosphere soils adjacent to roots on the non-irrigated side after 7 d. Application of identical amounts of water with the same deuterium enrichment level (2%) to soils without grapevine roots showed that physical transport of water through the vapour phase could not account for either downward or transverse movement of the label. These results confirmed that root presence facilitated the transport of label into soils distant from the wetted zone. When deuterium-labelled water was allowed to flow directly into the trunk above the root–trunk interface, reverse flow occurred and lateral movement across the trunk and into roots originating around the collar region did not encounter large disproportionate resistances. Rapid redistribution of water into the entire root system may have important implications for woody perennial cultivars growing where water availability is spatially heterogeneous. Under the predominantly dry soil conditions studied in this investigation, water redistributed into roots may extend root longevity and increase the vines water capacitance during periods of high transpiration demand. These benefits would be enhanced by diminished water loss from roots, and could be equally important to other cited benefits of hydraulic redistribution into soils such as enhancement of nutrient acquisition.  相似文献   

16.
Water flow through junctions in Douglas-fir roots   总被引:4,自引:0,他引:4  
Roots are important conduits for the redistribution of water within the rooting zone. Root systems are often highly branched, and water flow between regions undoubtedly involves passage through junctions between individual roots. This study considered junctions in the roots of Douglas-fir with regard to the resistances encountered by water flow through the xylem. Flow into the root branch distally along the main root encountered much greater resistance than flow into the branch and proximally along the main root (toward the plant stem). When the main root proximal to the junction was gradually shortened, the resistance to flow in the branch root and distally along the main root increased dramatically. Thus, flow in this manner appears to depend on lateral flow within the root over many centimetres proximal to the junction and not just within the direct connection at the junction. These results suggest that the hydraulic nature of junctions is an important aspect of hydraulic redistribution of water within the soil utilizing flow through roots.  相似文献   

17.
The hydraulic conductance of the leaf lamina (Klamina) substantially constrains whole‐plant water transport, but little is known of its association with leaf structure and function. Klamina was measured for sun and shade leaves of six woody temperate species growing in moist soil, and tested for correlation with the prevailing leaf irradiance, and with 22 other leaf traits. Klamina varied from 7.40 × 10?5 kg m?2 s?1 MPa?1 for Acer saccharum shade leaves to 2.89 × 10?4 kg m?2 s?1 MPa?1 for Vitis labrusca sun leaves. Tree sun leaves had 15–67% higher Klamina than shade leaves. Klamina was co‐ordinated with traits associated with high water flux, including leaf irradiance, petiole hydraulic conductance, guard cell length, and stomatal pore area per lamina area. Klamina was also co‐ordinated with lamina thickness, water storage capacitance, 1/mesophyll water transfer resistance, and, in five of the six species, with lamina perimeter/area. However, for the six species, Klamina was independent of inter‐related leaf traits including leaf dry mass per area, density, modulus of elasticity, osmotic potential, and cuticular conductance. Klamina was thus co‐ordinated with structural and functional traits relating to liquid‐phase water transport and to maximum rates of gas exchange, but independent of other traits relating to drought tolerance and to aspects of carbon economy.  相似文献   

18.
Effects of ectomycorrhizal (ECM) fungus Suillus tomentosus on water transport properties were studied in jack pine (Pinus banksiana) seedlings. The hydraulic conductivity of root cortical cells (Lpc) and of the whole root system (Lpr) in ECM plants was higher by twofold to fourfold compared with the non‐ECM seedlings. HgCl2 had a greater inhibitory effect on Lpc in ECM compared with non‐ECM seedlings, suggesting that the mercury‐sensitive, aquaporin (AQP)‐mediated water transport was largely responsible for the differences in Lpc between the two groups of plants. Lpc was rapidly and drastically reduced by the 50 mm NaCl treatment. However, in ECM plants, the initial decline in Lpc was followed by a quick recovery to the pre‐treatment level, while the reduction of Lpc in non‐ECM seedlings progressed over time. Treatments with fluoride reduced Lpc by about twofold in non‐ECM seedlings and caused smaller reductions of Lpc in ECM plants. When either 2 mm KF or 2 mm NaF were added to the 50 mm NaCl treatment solution, the inhibitory effect of NaCl on Lpc was rapidly reversed in both groups of plants. The results suggest that AQP‐mediated water transport may be linked to the enhancement of salt stress resistance reported for ECM plants.  相似文献   

19.
《植物生态学报》2016,40(7):702
Aims Trees with different wood properties display variations in xylem anatomy and leaf vein structure, which may influence tree water transport efficiency and water-use strategy, and consequently constrain tree survival, growth and distribution. However, the effects of wood properties on leaf hydraulic conductance and vulnerability and their potential trade-offs at leaf level are not well understood. Our aims were to examine variations in leaf hydraulic traits of trees with different wood properties and explore potential trade-offs between leaf hydraulic efficiency and safety.
Methods Nine tree species with different wood properties were selected for measuring the leaf hydraulic traits, including three diffuse-porous species (Populus davidiana, Tilia amurensis, Betula platyphylla), three ring-porous species (Quercus mongolica, Fraxinus mandshurica, Juglans mandshurica), and three non-porous species (Picea koraiensis, Pinus sylvestris var. mongolica, Pinus koraiensis). Four dominant and healthy trees per species were randomly selected. The hydraulic traits measured included leaf hydraulic conductance on leaf area (Karea) and dry mass (Kmass) basis, leaf hydraulic vulnerability (P50), and leaf water potential at turgor loss point (TLP), while the leaf structural traits were leaf dry mass content (LDMC), leaf density (LD) and leaf mass per unit area (LMA).
Important findings The Karea, Kmass, and P50 differed significantly among the tree species with different woody properties (p < 0.05). Both Karea and Kmass were the lowest for the non-porous trees, and did not differ significantly between the diffuse-porous and ring-porous trees. The ring-porous trees had the highest P50 values, while the diffuse-porous and non-porous trees showed no significant differences in P50. Both Karea and Kmass were negatively correlated with P50 (p < 0.05) for all the trees, and the relationships for the diffuse-porous, ring-porous, and non-porous trees were fitted into linear, power, exponential functions, respectively. This indicates that significant trade-offs exist between leaf hydraulic efficiency and safety. The Kmass was correlated (p < 0.01) with TLP in a negative linear function for the diffuse- and ring-porous trees and in a negative exponential function for the non-porous trees. The P50 increased with increasing TLP. These results suggest that apoplastic and symplastic drought resistance are strictly coordinated in order to protect living cells from approaching their critical water status under water stresses. The Kmass was negatively correlated (p < 0.01) with LDMC, LD, or LMA, while the P50 was positively correlated with LDMC and LD; this suggests that variations in Kmass and P50 are driven by similar changes in structural traits regardless of wood traits. We conclude that the tree tolerance to hydraulic dysfunction increases with increasing carbon investment in the leaf hydraulic system.  相似文献   

20.
This study examines the suitability of pozzolanic fly ash as a hydraulic barrier and the use of bentonite to enhance geotechnical properties of fly ash. The behavior of fly ash is studied not only with water but also with different pore fluids, such as acid, alkali, salts, and neutral organic fluid to assess its chemical compatibility. While some geotechnical properties of fly ash meet the requirements of liner material, the disadvantage of using of fly ash alone is that it has a low cation exchange capacity and high hydraulic conductivity. The compressibility of fly ash reduces with alkaline solution but increases with acidic solutions. While alkaline or neutral inorganic solutions do not affect the hydraulic conductivity of fly ash, the addition of dilute acid increases the hydraulic conductivity. Addition of bentonite improves the geotechnical properties of fly ash such as cation exchange capacity, shrinkage and volume change behavior, etc. Fly ash-bentonite mixtures possess low shrinkage and hence do not crack. Compacted fly ash-bentonite mixtures undergo very little volume changes under various stress conditions. The hydraulic conductivity of fly ash is reduced after amendment with bentonite. Though the unconfined compressive strength of the mixture is lower than that of fly ash alone, the fly ash-bentonite mixture still possesses good strength. The compressibility of fly ash bentonite mixtures are lower with different pore fluids studied than with water. The hydraulic conductivity of fly ash-bentonite mixtures are slightly higher in different pore fluids studied than with water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号