首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
In this paper we analyze emigration from nests by the polydomous ant Cataglyphis iberica. Social carrying of workers of this species between different nests of the colony is frequent. In Bellaterra (Barcelona, NE Spain), we monitored field emigration of C. iberica by noting for each nest the migratory behavior of C. iberica workers and, when the nests were attacked by another ant species, Camponotus foreli, we noted the number of C. foreli workers involved in the attacks. Emigration of C. iberica from nests was highly variable. We suggest the main factor determining emigration by this species was attack by workers of C. foreli, so emigration from C. iberica nests was much faster when harassment by C. foreli increased. The system of multiple nests of C. iberica enables this species to abandon attacked nests and to reinstall their population in other nests of the same colony. This reduces risk to the colonies because the route between the different nests is well known by transporter workers.  相似文献   

2.
Abstract 1. The colonies of the Spanish desert ant Cataglyphis iberica are polydomous. This study describes the temporal and spatial patterns of the polydomy in this species at two different sites, and presents analyses of its role in reducing the attacks of the queen over sexual brood, and in allowing better habitat exploitation.
2. The spatial distribution of nests was clumped while colonies were distributed randomly. Mean nearest neighbour distance ranged from 3.4 to 7.0 m for nests and from 12.3 to 14.1 m for colonies. Distance of foragers searching for food varied among nests: mean values were between 6.1 and 12.6 m.
3. At both sites, the maximum number of nests per colony occurred in summer, during the maximum activity period of the species. Colonies regrouped at the end of this period but overwintered in several nests.
4. Nest renewal in C. iberica colonies was high and showed great temporal variability: nests changed (open, close, re-open) continuously through the activity season and/or among years. The lifetime of up to 55% of nests was only 1–3 months.
5. Polydomy in C. iberica might decrease the interactions between the queen and the sexual brood. In all colonies excavated just before the mating period, the nest containing the queen did not contain any virgin female. Females were in the queenless nests of the colony.
6. The results also suggest that polydomous C. iberica colonies may enhance habitat exploitation because foraging activity per colony increases with nest number. The relationship between total prey input and foraging efficiency and number of nests per colony attains a plateau or even decreases after a certain colony size (four to six nests). This value agrees with the observed mean number of nests per colony in C. iberica .  相似文献   

3.
Predation pressure from ants is a major driving force in the adaptive evolution of termite defense strategies and termites have evolved elaborate chemical and physical defenses to protect themselves against ants. We examined predator–prey interactions between the woodland ant, Aphaenogaster rudis (Emery) and the eastern subterranean termite, Reticulitermes flavipes (Kollar), two sympatric species widely distributed throughout deciduous forests in eastern North America. To examine the behavioral interactions between A. rudis and R. flavipes we used a series of laboratory behavioral assays and predation experiments where A. rudis and R. flavipes could interact individually or in groups. One-on-one aggression tests revealed that R. flavipes are vulnerable to predation by A. rudis when individual termite workers or soldiers are exposed to ant attacks in open dishes and 100% of termite workers and soldiers died, even though the soldiers were significantly more aggressive towards the ants. The results of predation experiments where larger ant and termite colony fragments interacted provide experimental evidence for the importance of physical barriers for termite colony defense. In experiments where the termites nested within artificial nests (sand-filled containers), A. rudis was aggressive at invading termite nests and inflicted 100% mortality on the termites. In contrast, termite mortality was comparable to controls when termite colonies nested in natural nests comprised of wood blocks. Our results highlight the importance of physical barriers in termite colony defense and suggest that under natural field conditions termites may be less susceptible to attacks by ants when they nest in solid wood, which may offer more structural protection than sand alone.  相似文献   

4.
S. Higashi  F. Ito 《Oecologia》1989,80(2):145-147
Summary Mounds of Amitermes laurensis are frequently faided by meat ants Iridomyrmex sanguineus. Of eight ant species which often cohabit with the termites, Camponotus sp. B and C were considerably dependent on the termintaria for their nest sites and effectively protected it from the attacks by meat ants. Many termite colonies cohabiting with those two ant species were vigorous, suggesting that this ant-termite relationship is mutualistic; thus, the ants were provided nest sites and probably even food and the termites were protected from destructive natural enemies.  相似文献   

5.
Army ant colonies do not have permanent nests but frequently move to new patches. Local food depletion is considered the ultimate cause of this nomadic behaviour, but the proximate causes are not well understood. We tested if and how patch departure time of the aboveground-hunting army ant Dorylus molestus under field conditions is influenced by food availability and nest attacks by predators. In the first food supplement experiment, colonies receiving additional food throughout an entire nest stay did not reside in their nests for longer periods than control colonies. However, the distances travelled by colonies after nest stays during which colonies obtained food were shorter than those before these nest stays, indicating that colonies do assess food availability and avoid moving too far away from patches of high food availability. In the second food supplement experiment, in which colonies were given even larger amounts of food in the second half of their nest stay to mimic a rich unpredictable food source that these highly polyphagous predators are likely to encounter sometimes, patch departure times likewise did not differ between treated and control colonies. Either patch departure time is independent of food availability or there is another, as yet unappreciated proximate cause of colony movements in this species which we were unable to control for in our field experiments. One possibility is that encounters between neighbouring colonies influence patch departure time. In the experiment on the effect of predation, colonies responded to simulated nest attacks by mammals by leaving nests almost instantaneously and thus much earlier than control colonies. Rapid nest evacuation is likely a response to minimize the probability of repeat attacks by predators which cannot be repelled in other ways. Future studies will be necessary to definitively determine whether food availability influences patch departure times and to elucidate the consequences of colony encounters.  相似文献   

6.
Effects of the Argentine ant on myrmecophilous animals living inside ant nests have been rarely studied to date. We investigated whether the “specialist” myrmecophilous cricket Myrmecophilus kubotai Maruyama that lives only in colonies of a Japanese native ant, Tetramorium tsushimae Emery, could live with the Argentine ant. In the field, the cricket was never found in nests of the Argentine ant. Our experiments showed that the cricket could not survive in artifical nests of the Argentine ant under laboratory conditions.  相似文献   

7.
The primitive eusocial wasp Mischocyttarus cerberus forms colonies of independent foundation, without morphological differentiation among castes. Ants are natural enemies of the social wasps and defending the wasps’ nests involves chemical and active defense strategies. The aims of this work were to verify the kind of defense the wasps use most frequently in post-emergent colonies of M. cerberus. We also observed whether the nest was abandoned during the ant attack and whether any relationship existed between the forms that colony defense took and the number of adults, the number of cells, and the number of immature wasps. The study was carried out on the campus of Universidade Estadual Paulista of Rio Claro, São Paulo, Brazil. The 23 nests under study were mapped weekly, and 68 bioassays were performed by simulating ant attacks against the nests. The results showed that wasps used both active and chemical strategies for nest defense, and the PCA analysis showed that the aggressive behaviors of biting the ant, wings vibrating, gaster hitting, and abdomen pumping were the dominant terms; the PCA correlation values were 2.70, 2.54, 1.64, and 1.63, respectively. The colonies in pre- and post-male substages with few immature wasps and the nests in post-male substage with one adult were more correlated with the nonaggressive behaviors of hiding, staying immobile, and flying; their PCA correlation values were 3.12, 2.56, and 1.77, respectively. These results show that the number of immature wasps is an important factor in the kind and in the intensity of the defense behavior against ant attacks.  相似文献   

8.
Long-term field studies of the composition and spatial structure of settlements of ants of the Formica rufa group were carried out in two regions of Russia (Moscow and Arkhangelsk provinces). Fragmentation of damaged nests followed by reintegration of the fragments is the main way of formation of mixed colonies of ants from different nests (including different species). The principal factor of nest fragmentation is their damage by wild boars, bears, and in some localities, by poachers. The formation of mixed nests and nest complexes with participation of different Formica species was observed. They are formed by joining the ants from several damaged nests or by a colony from a destroyed nest immigrating into an intact one. Regular damage of many nests leads to the formation of broad zones of mixed colonies. The mixed colonies including 2–3 species of wood ants have recently become common. The phenomenon of mixed colonies raises a question as to the relative importance of two basic principles (sociality and specific identity) in the life of ant societies and demonstrates the priority of the social principle.  相似文献   

9.
Although the Neotropical territorially dominant arboreal ant Azteca chartifex Forel is very aggressive towards any intruder,its populous colonies tolerate the close presence of the fierce polistine wasp Polybia rejecta(F.).In French Guiana,83.33%of the 48 P.rejecta nests recorded were found side by side with those of A.chartifex.This nesting association results in mutual protection from predators(i.e.,the wasps protected from army ants;the ants protected from birds).We conducted field studies,laboratorybased behavioral experiments and chemical analyses to elucidate the mechanisms allowing the persistence of this association.Due to differences in the cuticular profiles of the two species,we eliminated the possibility of chemical mimicry.Also,analyses of the carton nests did not reveal traces of marking on the envelopes.Because ant forager flows were not perturbed by extracts from the wasps’Dufour’s and venom glands,we rejected any hypothetical action of repulsive chemicals.Nevertheless,we noted that the wasps"scraped"the surface of the upper part of their nest envelope using their mandibles,likely removing the ants'scent trails,and an experiment showed that ant foragers were perturbed by the removal of their scent trails.This leads us to use the term"erasure hypothesis."Thus,this nesting association persists thanks to a relative tolerance by the ants towards wasp presence and the behavior of the wasps that allows them to"contain"their associated ants through the elimination of their scent trails,direct attacks,"wing-buzzing"behavior and ejecting the ants.  相似文献   

10.
Summary. The Argentine ant, Linepithema humile, severely decreases the abundance and diversity of native ant fauna in areas where it invades, but coexists with a more diverse assemblage of ants in its native range. The greater ecological dominance of L. humile in the introduced range may be associated with differences in colony structure and population density in the introduced range relative to the native range. In this study, I compared aspects of L. humiles colony structure, including density, the spatial pattern of nests and trails, and patterns of intraspecific aggression in parts of the introduced and native ranges. I also compared the number of ant species coexisting with L. humile. Introduced and native populations did not differ significantly in nest density, ant density, nest size, and nearest-neighbor distances. In three of the four study populations in the native range and all of the study populations in the introduced range, colonies were organized into supercolonies: they consisted of multiple, interconnected nests that were dense and spatially clumped, and aggression among conspecifics was rare. In one population in the native range, colonies were organized differently: they occupied single nest sites, nests were sparse and randomly dispersed, and ants from neighboring nests were aggressive toward each other. Species richness was significantly higher in the native range than in the introduced range, even in areas where L. humile formed dense supercolonies. The results suggest that differences in species coexistence between ranges may due to factors other than L. humiles colony structure. One likely factor is the superior competitive ability of other ant species in the native range.Received 23 January 2004; revised 30 March 2004; accepted 20 April 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号