首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
水稻矮缩病毒昆明分离物抗血清制备及免疫捕捉PCR检测   总被引:1,自引:0,他引:1  
由水稻矮缩病毒(Rice dwarf viru S,RDV)引起的水稻矮缩病害,最早由日本报道,随后在东南亚等国以及我国的福建、云南等南方稻区普遍发生,云南主要发生于中部及南部地区[1].水稻在苗期至分蘖期感病后,植株矮缩,分蘖增多,叶片浓绿,僵直,出现白斑,生长后期病稻不能抽穗结实,在暴发流行年份可以引起水稻的严重减产.  相似文献   

2.
水稻矮缩病毒第11号组分基因序列和编码蛋白的功能分析   总被引:10,自引:0,他引:10  
水稻矮缩病毒(Rice Dwarf Virus-RDV)广泛分布于中国、日本及东南亚地区,侵染水稻和禾本科其它一些作物,是造成水稻减产的主要原因之一,对农作物危害极大。RDV属于呼肠孤病毒科(Re-oviridae)中的植物呼肠孤病毒属(Phytoreovirus)成员,其病毒粒子直径70nm,为20面体,有双层  相似文献   

3.
日本农林水产省农业生物资源研究所分子育种部基因构选研究室美浓部修三、农业研究中心病虫防治部病毒病防治研究室大村敏博等克隆培养水稻矮化病病毒 cDNA 获得成功。本实验在克隆培养水稻病毒 cDNA 方面是首创。这项研究为水稻病毒感染,发现病征的机构的分子生物学解剖开辟道路。水稻矮化病毒(RDV)是属于植物呼肠孤病毒组的病毒。以分成12片段的双链 RNA为基因,具有 mRNA 转录时必需的转录酶群。植物呼肠孤病毒多数情况下具有肿瘤衍生性。相反,RDV 的病征仅能使水稻矮缩。另外,还能在作为媒介昆虫的浮尘子体内增殖,且有  相似文献   

4.
本文探讨了水稻普通矮缩病毒(RDV)抗血清制备免疫抗体的方法及其对带毒体的检测。用化学纯活性炭为载体,制备RDV抗血清免疫炭抗体,抗血清需要纯化处理,具有结合抗原活性的抗体碎片[F(ab)2]优于免疫丙球蛋白(IgG)。F(ab)2浓度以每毫升约1毫克左右为宜,致敏条件以22—30℃碾磨结合30分钟为优。  相似文献   

5.
水稻普通矮缩病毒(RDV)的兔抗血清能分别与家蚕细胞质多角体病毒(CPV)颗粒及其双链RNA在免疫对流电泳中产生沉淀线。用水稻普通矮缩病毒的抗血清中和后的家蚕CPV的感染力与对照相比降低二个数量级。  相似文献   

6.
由草鱼呼肠孤病毒(Grass carp reovlrus,GCRV)引起的草鱼出血病,是对草鱼危害最大的传染性疾病之一.GCRV是双链RNA病毒,属呼肠孤病毒科(Reoviridae),水生呼肠孤病毒属(Aquareovirus),G亚型[1].GCRV主要引起草鱼、青鱼等在鱼种阶段发生出血病.  相似文献   

7.
水稻病毒的吸收光谱和荧光光谱   总被引:1,自引:0,他引:1  
本文报导水稻簇矮病毒(RBSV),水稻矮缩病毒(RDV),水稻东格鲁病毒(RTV),水稻齿矮病毒(RRSV)和水稻草矮病毒(RGSV)等的吸收光谱和荧光光谱.结果表明:不同病毒有不同的吸收光谱带和荧光光谱带.它包括主峰,各次峰及其轮廓.通过不同相对强度的光谱,可以判断其浓度.这些光谱可以反映病毒的某些结构信息.同时通过光谱也可以鉴别水稻病毒的类型.  相似文献   

8.
水稻矮缩病毒第一号组份基因和编码蛋白的序列分析   总被引:7,自引:3,他引:4  
水稻矮缩病毒(RiceDwarfVirus,简称RDV)是我国南方水稻病毒病的重要病原,属植物呼肠孤病毒。从中国福建分离物中克隆了基因组第一号片段(S1)的全长cDNA并对其进行全序列分析,结果表明RDV福建分离物S1克隆片段全长4422bp,含有一个长4332bp的开放阅读框架,编码一个由1444个氨基酸组成的多肽(P1),分子量为164kD.根据基因序列,对推测的P1氨基酸序列分析表明,序列中含有依赖于RNA的RNA聚合酶(RNA-dependentpolymerase-RDRP)保守序列:motifI(DXXXXD)、motifⅡ(SGXXXTXXXN)和motifⅢ(GDD),除此之外,在模式Ⅲ后还存在一个很保守的区域EXXKXY。由此说明RDVS1编码的蛋白P1可能是病毒的一种RDRP。将RDV福建分离物引核苷酸和编码蛋白氨基酸序列与日本流行株系相比,同源性分别为95%和97%。RDV福建分离物S1序列已被DenBank接受,号码为U73201。  相似文献   

9.
水稻矮缩病毒小外壳蛋白基因的合成、克隆和序列分析   总被引:3,自引:1,他引:2  
叶寅  高炬 《Virologica Sinica》1991,6(4):381-384
从感染水稻矮缩病毒(RDV)的水稻叶片中分离纯化了RDV,用人工合成的寡核苷酸为引物,合成了长度为1.0kb的小外壳蛋白基因,经PCR扩增后,克隆至pUC-19载体上。以双脱氧链终止法测序得到其全长序列,同已发表的RDV日本分离物小外壳蛋白基因序列相比有很高的同源率。  相似文献   

10.
呼肠孤病毒在自然界广泛存在于脊椎动物、无脊椎动物和植物中.水产动物呼肠孤病毒感染曾见于鱼、贝、蟹.近几年随着对对虾病毒病害研究的日益重视,在对虾中也发现呼肠孤病毒的感染.Tsing等[1]最早于1987年在法国南部养殖的日本对虾(P.japonicus)幼虾中发现呼肠孤病毒感染.Krol等[2]于1990年在试验感染的南美白对虾(P.vannamei)中发现呼肠孤样病毒与对虾杆状病毒混合感染.中国大陆养殖的中国对虾自1993年全面暴发流行病以来,许多学者进行了对虾流行病的病原学、流行病学及诊断和防治方法的研究,部分学者曾在中国对虾(P.chinensis)中观察到呼肠孤样病毒颗粒[3],但未报道较详细的电子显微镜观察资料.  相似文献   

11.
Recombinant DNA technology was used to raise a polyclonal antiserum against the coat protein (CP) of Parietaria mottle virus (PMoV). The CP gene was expressed in Escherichia coli as a fusion to a 6xHis tag and purified by affinity chromatography. Recombinant purified protein was used as antigen to raise a polyclonal antiserum. This polyclonal antiserum consistently detected PMoV specifically infected tomato plants from different commercial tomato crops by indirect enzyme-linked immunosorbent assay (I-ELISA) and direct tissue-printing immunoassay (DTBIA).  相似文献   

12.
Rice dwarf virus (RDV) was isolated and purified from infected rice leaves with chloro form extraction, PEG precipitation and sucrose gradient centrifugation. Total RDV RNA ge nome was separated in the agarose gel and segments of RDV RNA genome were purified. The cDNAs of several segments were synthesized with oligo dT as primer. Through cDNA mapping, subcloning and sequencing, we have obtained partial DNA sequence of those segments. Here we report the cloning and partial DNA sequence of segment 8 from RDV RNA genome.  相似文献   

13.
Hyperimmune antisera to purified Sindbis (SIN) or Semliki Forest (SF) virus were used to identify alphavirus-specific and cross-reactive proteins in virions and infected cells. The hyperimmune sera participated in homologous and cross-cytolysis of alphavirus-infected cells, and the use of monospecific antisera to SIN structural proteins suggested that E1 and E2 could serve as target proteins in cytolysis. Proteins from purified virions or infected cells were extracted with Nonidet P-40, denatured by procedures for sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose solid supports, and reacted with hyperimmune sera and 125I-labeled protein A (immunoblotting on denatured proteins). Alternatively, native proteins extracted by mild Nonidet P-40 treatment were precipitated with hyperimmune sera before denaturation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After immunoblotting, homologous antiserum reacted with the virus structural proteins E1, E2, capsid extracted from purified virions, and the counterparts of these proteins extracted from infected cells. In addition, PE2 and a 92,000-molecular-weight protein from infected cells reacted with homologous antiserum. These proteins were also immunoprecipitated with homologous antiserum. After immunoblotting, the Sindbis capsid protein was shown to be cross-reactive whether derived from purified virions or from infected cells; no cross-reactivity was observed with PE2 or E2 from either source, and the E1 glycoprotein was shown to be cross-reactive only when obtained from virions. However, the E1 glycoprotein could be cross-immunoprecipitated from infected cells (as well as from disrupted virions), and, in addition, capsid and a 92,000-molecular-weight protein were cross-immunoprecipitated from infected cells. These results suggest that a native conformation of the cell-associated E1 glycoproteins may be required for immunological cross-reactivity (immune precipitation), whereas virion but not cell-associated E1 retains immunological cross-reactivity after denaturation (immunoblot technique). The findings extend our previously published evidence which suggested that alphavirus maturation is accompanied by a change in immunological cross-reactivity with respect to E1.  相似文献   

14.
水稻黑条矮缩病传毒昆虫的防治实践与研究   总被引:24,自引:2,他引:22  
水稻黑条矮缩病 (RBSDV)是由传毒媒介灰飞虱Laodelphaxstriatellus (Fall n)传播所致 ,治虫防病是目前防治水稻黑条矮缩病的重要手段。生产实践证明 ,防治该病应以控制灰飞虱种群数量增长为首选目标 ,把带毒灰飞虱尽可能地扑灭在迁移到水稻秧苗进行传毒侵染之前。因此掌握防治适期 ,选用高效低毒农药 ,切断初次侵染来源 ,才能达到控制该病发生的目的。  相似文献   

15.
The nonstructural Pns9 protein of Rice gall dwarf virus (RGDV) accumulates in viroplasm inclusions, which are structures that appear to play an important role in viral morphogenesis and are commonly found in host cells infected by viruses in the family Reoviridae. An RNA interference construct was designed to target the gene for Pns9 of RGDV, namely Trigger_G9. The resultant transgenic plants accumulated short interfering RNAs specific for the construct. All progenies from self-fertilized transgenic plants had strong and heritable resistance to RGDV infection and did not allow the propagation of RGDV. By contrast, our transgenic plants remained susceptible to Rice dwarf virus, another phytoreovirus. There were no significant changes in the morphology of our transgenic plants compared with non-inoculated wild-type rice plants, suggesting that genes critical for the growth of rice plants were unaffected. Our results demonstrate that the resistance to RGDV of our transgenic rice plants is not due to resistance to the vector insects but to specific inhibition of RGDV replication and that the designed trigger sequence is functioning normally. Thus, our strategy to target a gene for viroplasm matrix protein should be applicable to plant viruses that belong to the family Reoviridae.  相似文献   

16.
抗南方水稻黑条矮缩病水稻光温敏核不育系的筛选和鉴定   总被引:2,自引:0,他引:2  
对东乡野生稻(Oryza rufipogon Griff.)3个生态群落株系及协青早B//协青早B/东乡野生稻的BC1F6株系进行了南方水稻黑条矮缩病抗性鉴定,筛选出抗性较好的种质资源。利用筛选到的协青早B//协青早B/东乡野生稻抗性株系,与光温敏核不育系C47S杂交转育,鉴定筛选到6份抗性较好的光温敏核不育系,为选育抗南方水稻黑条矮缩病的两系杂交稻组合奠定了材料基础;同时研究发现,来源于东乡野生稻的对南方水稻黑条矮缩病的抗性可能由数量性状基因控制。  相似文献   

17.
The polypeptide encoded by the open reading frame UL69 of human cytomegalovirus (HCMV), which is homologous to the immediate-early regulator ICP27 of herpes simplex virus, has recently been identified as a transactivator protein that exerts a broad stimulatory effect on gene expression (M. Winkler, S. A. Rice, and T. Stamminger, J. Virol. 68:3943-3954, 1994). Here, we provide evidence that pUL69 is a phosphorylated tegument protein of HCMV. This finding could be demonstrated by Western blot (immunoblot) analyses with purified virions and a specific antiserum against pUL69. These experiments revealed that one phosphorylated subform of the three pUL69 polypeptides that are synthesized in infected fibroblast cells is contained within the HCMV virion. After the treatment of purified virions with detergents, pUL69 could not be detected within the membrane fraction, suggesting that it is either a capsid or a tegument protein. Its presence within dense bodies, however, shows that pUL69 is a constituent of the viral tegument.  相似文献   

18.
An antiserum was raised against the African swine fever virus (ASFV)-encoded ubiquitin-conjugating enzyme (UBCv1) and used to demonstrate by Western blotting (immunoblotting) and immunofluorescence that the enzyme is present in purified extracellular virions, is expressed both early and late after infection of cells with ASFV, and is cytoplasmically located. Antiubiquitin serum was used to identify novel ubiquitin conjugates present during ASFV infections. This antiserum stained virus factories late after infection, suggesting that virion proteins may be ubiquitinated. This possibility was confirmed by Western blotting, which identified three major antiubiquitin-immunoreactive proteins with molecular masses of 5, 18, and 58 kDa in purified extracellular virions. The 18-kDa protein was solubilized from virions at relatively low concentrations of the detergent n-octyl-beta-D-glucopyranoside, indicating that it is externally located and is possibly in the virus capsid. The 18-kDa protein was purified, and N-terminal amino acid sequencing confirmed that the protein was ubiquitinated and was ASFV encoded. The ASFV gene encoding this protein (PIG1) was sequenced, and the encoded protein expressed in an Escherichia coli expression vector. Recombinant PIG1 was ubiquitinated in the presence of E. coli expressed UBCv1 in vitro. These results suggest that PIG1 may be a substrate for UBCv1. The predicted molecular masses of the PIG1 protein and recombinant ubiquitinated protein were larger than the 18-kDa molecular mass of the ubiquitinated protein present in virions. Therefore, during viral replication, a precursor protein may undergo limited proteolysis to generate the ubiquitinated 18-kDa protein.  相似文献   

19.
水稻草矮病毒在水稻原生质体中的表达   总被引:2,自引:0,他引:2  
通过建立水稻原生质体培养体系,经多聚鸟氨酸(PLO)介导将提纯的水稻草矮病毒(Rice grassy stunt virus,RGSV)接种到水稻原生质体内,利用酶联免疫吸附法(ELISA)及蛋白免疫印迹法(Western blot),研究RGSV在水稻原生质体内的生长周期及其编码蛋白的表达情况。结果表明: RGSV在接种后24h左右开始在原生质体内复制,36h左右达到最大值。NS6在15h左右开始表达,在30h左右达到最大值。  相似文献   

20.
Cynara rhabdovirus (CyRV) was isolated from symptomless artichoke plants in southern Italy using Nicotiana langsdorffii as susceptible host and immune serum to artichoke latent virus to eliminate this virus from inoculum. CyRV can infect several solanaceous species, has thermal inactivation point of 40-45°C, dilution end point between 10?2 and 10?5 and longevity in vitro at 4 and 20°C of 4-5 days and 6-24 h, respectively. It was purified and used for preparing antisera with homologous titre varying from 1: 16 to 1: 64. In decoration tests, the virus did not react against antisera to eggplant mottled dwarf virus (EMDV) and its antiserum did not decorate ivy vein clearing virus (IVCV). Ultrastructural aspects of CyRV infection in Datura stramonium and Nicotiana glutinosa were very like those described for the same virus in the past except for presence of longer virions which were often encountered in infected cells during this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号