首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The p38 signalling transduction pathway, a Mitogen-activated protein (MAP) kinase pathway, plays an essential role in regulating many cellular processes including inflammation, cell differentiation, cell growth and death. Activation of p38 often through extracellular stimuli such as bacterial pathogens and cytokines, mediates signal transduction into the nucleus to turn on the responsive genes. p38 also transduces signals to other cellular components to execute different cellular responses. In this review, we summarize the characteristics of the major components of the p38 signalling transduction pathway and highlight the targets of this pathway and the physiological function of the p38 activation.  相似文献   

2.
Despite their fundamental importance, the dynamics of signaling pathways in living cells remain challenging to study, due to a lack of non-invasive tools for temporal assessment of signal transduction in desired cell models. Here we report a dual-reporter strategy that enables researchers to monitor signal transduction in mammalian cells in real-time, both temporally and quantitatively. This is achieved by co-expressing green fluorescent protein and firefly luciferase in response to signaling stimuli. To display the versatility of this approach, we constructed and assessed eight unique signaling pathway reporters. We further validated the system by establishing stable NF-κB pathway reporter cell lines. Using these stable cell lines, we monitored the activity of NF-κB-mediated inflammatory pathway in real-time, both visually and quantitatively. Live visualization has the power to reveal individual cell responses and is compatible with single cell analysis, In addition, we provide evidence that this system is readily amenable to a high-throughput format. Together, our findings demonstrate the potential of the dual reporter system, which significantly improves the capacity to study signal transduction pathways in mammalian cells.  相似文献   

3.
4.
钙—钙调素信号系统与环境刺激   总被引:5,自引:1,他引:4  
植物抗逆研究已有很大进展,但传递各种外界刺激的信号通路仍未可知,目前已有一些研究发现很多环境刺激与钙-钙调素系统有关,Ca^2 信号系统是很重要的一种信号途径,CaM是目前已知的胞内Ca^2 信号受体中最重要的一种,参与了多种生理活动的调节,在热激领域中,研究者已提出Ca^2 -CaM系统可能参与了热激反应,在基因调节水平,转录水平,蛋白水平均有Ca^2 和CaM参与热激的证据,其它环境刺激也能引起植物体内Ca^2 和CaM的一系列变化,这为研究各种环境刺激可能的信号通路提供了基础和依据。  相似文献   

5.
植物抗逆研究已有很大进展,但传递各种外界刺激的信号通路仍未可知,目前已有一些研究发现很多环境刺激与钙_钙调素系统有关。Ca2+信号系统是很重要的一种信号途径,CaM是目前已知的胞内Ca2+信号受体中最重要的一种,参与了多种生理活动的调节。在热激领域中,研究者已提出Ca2+ CaM系统可能参与了热激反应,在基因调节水平、转录水平、蛋白水平均有Ca2+和CaM参与热激的证据。其它环境刺激也能引起植物体内Ca2+和CaM的一系列变化。这为研究各种环境刺激可能的信号通路提供了基础和依据。  相似文献   

6.
The mitogen-activated protein kinase cascade is a conserved signal transduction pathway found in organisms of complexity spanning from yeast to humans. In many mammalian tissue types, this pathway can correctly transduce signals from different extracellular messengers, leading to specific and often mutually exclusive cellular responses. The transduced signal is tuned by a complicated set of positive and negative feedback control mechanisms and fed into a downstream gene expression network. This network, based on the immediate early gene system, has two possible, mutually exclusive outcomes. Using a mathematical model, we study how different stimuli lead to different temporal signal structure. Further, we investigate how each of the feedback controls contributes to the overall specificity of the gene expression output, and hypothesize that the complicated nature of the mammalian mitogen-activated protein kinase pathway results in a system able to robustly identify and transduce the proper signal without investing in two completely separate signal cascades. Finally, we quantify the role of the RKIP protein in shaping the signal, and propose a novel mechanism of its involvement in cancer metastasis.  相似文献   

7.
Quiescent primary B lymphocytes and Epstein-Barr virus (EBV)-immortalized lymphoblastoid cell lines express components of the extracellular response kinase arm of the mitogen-activated protein kinase (MAPK(ERK)) signal transduction pathway and transmit signals through the pathway when exposed to appropriate stimuli. Although the MAPK(ERK) pathway is activated following infection with EBV, MAPK/ERK kinase (MEK1) activity is not required to drive the proliferation of infected cells. However, MEK1 contributes to EBV latency control.  相似文献   

8.
Mitogen-activated protein (MAP) kinase signaling cascades are multi-functional signaling networks that influence cell growth, differentiation, apoptosis, and cellular responses to stress. Apoptosis signal-regulating kinase 1 (ASK1) is a MAP kinase kinase kinase that triggers apoptogenic kinase cascade leading to the phosphorylation/activation of c-Jun N-terminal kinases and p38-MAP kinase, which are responsible for inducing apoptotic cell death. This pathway plays a pivotal role in transduction of signals from different apoptotic stimuli. In the present review, we summarized the recent evidence concerning MAP kinase-dependent apoptotic pathway and its regulation in the mammalian cells and organism in vivo. We have shown that the key messengers of regulation of this pathway are the reactive oxygen and nitrogen species. The role of protein oxidation and S-nitrosation in induction of apoptotic cell death via ASK1 is discussed. Also we have outlined other recently discovered signal transduction processes involved in the regulation of ASK1 activity and downstream pathway.  相似文献   

9.
10.
11.
Eukaryotic cells respond to extracellular stimuli, such as viruses, by recruiting signal transduction pathways, many of which are mediated through activation of distinct mitogen-activated protein kinase (MAPK) cascades and activation of transductional regulation factors. The best characterized of this pathway are the extracellular signal regulated kinase (ERK), the c-Jun N-terminal kinase/stress activated protein kinase (JNK/SAPK), and the p38 MAPK cascade. Herpes simplex virus type 1 (HSV-1) encodes at least 11 envelope glycoproteins, which alone or in concert play different roles in viral adsorption, entry, cell-to-cell spread, and immune evasion. Of these proteins, three are designated glycoprotein B (gB), glycoprotein D (gD), and the gH/gL heterodimer, are clearly involved in attachment and entry, and therefore possible candidates in inducing early cellular activation.Nevertheless, the precise role of each glycoprotein and the cellular factor involved remain elusive. The signal transduction pathways involved, and the outcome of cellular activation on viral entry or postentry events, are still to be elucidated. To better understand the role of signal transduction pathways and phosphorylation events in HSV-1 entry, synthetic peptides modeled on HSV-1 gH were synthesized and tested for MEK1-MEK2/MAPK cascade activation. Our results show a major involvement of the JNK pathway in the intracellular signal transmission after stimulation with gH HSV-1 peptides.  相似文献   

12.
13.
Signal transduction underlies how living organisms detect and respond to stimuli. A goal of synthetic biology is to rewire natural signal transduction systems. Bacteria, yeast, and plants sense environmental aspects through conserved histidine kinase (HK) signal transduction systems. HK protein components are typically comprised of multiple, relatively modular, and conserved domains. Phosphate transfer between these components may exhibit considerable cross talk between the otherwise apparently linear pathways, thereby establishing networks that integrate multiple signals. We show that sequence conservation and cross talk can extend across kingdoms and can be exploited to produce a synthetic plant signal transduction system. In response to HK cross talk, heterologously expressed bacterial response regulators, PhoB and OmpR, translocate to the nucleus on HK activation. Using this discovery, combined with modification of PhoB (PhoB‐VP64), we produced a key component of a eukaryotic synthetic signal transduction pathway. In response to exogenous cytokinin, PhoB‐VP64 translocates to the nucleus, binds a synthetic PlantPho promoter, and activates gene expression. These results show that conserved‐signaling components can be used across kingdoms and adapted to produce synthetic eukaryotic signal transduction pathways.  相似文献   

14.
Cellular signalling networks integrate environmental stimuli with the information on cellular status. These networks must be robust against stochastic fluctuations in stimuli as well as in the amounts of signalling components. Here, we challenge the yeast HOG signal‐transduction pathway with systematic perturbations in components’ expression levels under various external conditions in search for nodes of fragility. We observe a substantially higher frequency of fragile nodes in this signal‐transduction pathway than that has been observed for other cellular processes. These fragilities disperse without any clear pattern over biochemical functions or location in pathway topology and they are largely independent of pathway activation by external stimuli. However, the strongest toxicities are caused by pathway hyperactivation. In silico analysis highlights the impact of model structure on in silico robustness, and suggests complex formation and scaffolding as important contributors to the observed fragility patterns. Thus, in vivo robustness data can be used to discriminate and improve mathematical models.  相似文献   

15.
Mitogen-activated protein kinases (MAPKs) are a group of serine/threonine kinases which are activated in response to a diverse array of extracellular stimuli and mediate signal transduction from the cell surface to the nucleus. It has been demonstrated that MAPKs are activated by external stimuli including chemotherapeutic agents, growth factors and reproductive hormones in ovarian surface epithelial cells. Thus, the MAPK signaling pathway may play an important role in the regulation of proliferation, survival and apoptosis in response to these external stimuli in ovarian cancer. In this article, an activation of the MAPK signaling cascade by several key reproductive hormones and growth factors in epithelial ovarian cancer is reviewed.  相似文献   

16.
Eisosomes are multiprotein structures that generate linear invaginations at the plasma membrane of yeast cells. The core component of eisosomes, the BAR domain protein Pil1, generates these invaginations through direct binding to lipids including phosphoinositides. Eisosomes promote hydrolysis of phosphatidylinositol 4,5 bisphosphate (PI(4,5)P2) by functioning with synaptojanin, but the cellular processes regulated by this pathway have been unknown. Here, we found that PI(4,5)P2 regulation by eisosomes inhibits the cell integrity pathway, a conserved MAPK signal transduction cascade. This pathway is activated by multiple environmental conditions including osmotic stress in the fission yeast Schizosaccharomyces pombe. Activation of the MAPK Pmk1 was impaired by mutations in the phosphatidylinositol (PI) 5-kinase Its3, but this defect was suppressed by removal of eisosomes. Using fluorescent biosensors, we found that osmotic stress induced the formation of PI(4,5)P2 clusters that were spatially organized by eisosomes in both fission yeast and budding yeast cells. These cortical clusters contained the PI 5-kinase Its3 and did not assemble in the its3-1 mutant. The GTPase Rho2, an upstream activator of Pmk1, also co-localized with PI(4,5)P2 clusters under osmotic stress, providing a molecular link between these novel clusters and MAPK activation. Our findings have revealed that eisosomes regulate activation of MAPK signal transduction through the organization of cortical lipid-based microdomains.  相似文献   

17.
双组分系统——细胞识别渗透胁迫信号的感应器   总被引:3,自引:0,他引:3  
双组分系统是广泛存在于原核和真核细胞中的信号转导系统.主要由组氨酸蛋白激酶(HPK)和响应调节蛋白(RR)两个组分组成. 双组分系统信号通路一般包括信号的输入、HPK自身磷酸化、RR磷酸化、信号输出等环节.对双组分系统信号转导机制及其在渗透胁迫信号识别和传导中的作用进行了综述.  相似文献   

18.
Neutrophils and other phagocytic cells of the immune system possess a superoxide-generating oxidase system which is essential for the efficient killing of microbes. The system is activated by a wide variety of stimuli, some of which operate through pathways involving protein kinase C (PKC), while others appear not to. The PKC-dependent pathway is probably the major signal transduction route for most of the stimuli. Alterations in cellular Ca2+ and diglyceride levels can have a pronounced stimulatory effect on this pathway by their ability to synergistically activate PKC. This review discusses PKC, the different interactions of this kinase with the plasmalemma that are important in superoxide production, the synergy between Ca2+ and diglyceride, and the nature of the phosphoproteins involved. Evidence supporting the existence of the PKC-independent pathway is also reviewed.  相似文献   

19.
In the gonads, there are two recognized signal transduction mechanisms which operate in the processing of hormonal stimuli. The gonadotropins, follicle stimulating hormone and luteinizing hormone, act primarily through the generation of cyclic AMP. Several other hormonal regulators in the ovary and the testis, such as gonadotropin releasing hormone and prostaglandin F2 stimulate inositol lipid metabolism following receptor binding. This triggers a cascading mechanism which ultimately results in the generation of increased cytosolic free calcium levels, enhanced protein kinase C activity, and liberation of arachidonic acid. There is also evidence that luteinizing hormone shares in the activation of this pathway. In this review, the significance of these signal transduction pathways is discussed in relation to the effects of various hormones on steroid biosynthesis in the gonads.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号