首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
The malaria mosquito Anopheles gambiae sensu stricto is mainly guided by human odour components to find its blood host. Skin bacteria play an important role in the production of human body odour and when grown in vitro, skin bacteria produce volatiles that are attractive to A. gambiae. The role of single skin bacterial species in the production of volatiles that mediate the host-seeking behaviour of mosquitoes has remained largely unknown and is the subject of the present study. Headspace samples were taken to identify volatiles that mediate this behaviour. These volatiles could be used as mosquito attractants or repellents. Five commonly occurring species of skin bacteria were tested in an olfactometer for the production of volatiles that attract A. gambiae. Odour blends produced by some bacterial species were more attractive than blends produced by other species. In contrast to odours from the other bacterial species tested, odours produced by Pseudomonas aeruginosa were not attractive to A. gambiae. Headspace analysis of bacterial volatiles in combination with behavioural assays led to the identification of six compounds that elicited a behavioural effect in A. gambiae. Our results provide, to our knowledge, the first evidence for a role of selected bacterial species, common on the human skin, in determining the attractiveness of humans to malaria mosquitoes. This information will be used in the further development of a blend of semiochemicals for the manipulation of mosquito behaviour.  相似文献   

2.
Anopheles gambiae sensu stricto and Aedes aegypti have a preference for human blood, which determines their importance as vectors of pathogens responsible for human diseases. Volatile organic chemicals are the principal cues by which humans are being located. Human sweat contains components that are attractive to anthropophilic mosquito species, and variation in sweat composition causes differential attractiveness to mosquitoes within and between individuals and also between humans and other mammals. Characteristics of skin glands and skin microbiota define the odorous organic compounds emitted by sweat, thereby the degree of attractiveness of the host to mosquitoes. Carboxylic acids in particular appear to characterize humans. Thus sweat-associated human volatiles are probably the primary determinant factor in the host preference of anthropophilic mosquitoes.  相似文献   

3.
Host odours play a major role in the orientation and host location of blood-feeding mosquitoes. Anopheles gambiae Giles sensu stricto, which is the most important malaria vector in Africa, is a highly anthropophilic mosquito species, and the host-seeking behaviour of the females of this mosquito is guided by volatiles of human origin. Ammonia, lactic acid and several carboxylic acids are known to be present in the human odour blend. We investigated the effect of these compounds on naive female mosquitoes using a dual-port olfactometer. Ammonia was an attractant on its own, whereas lactic acid was not attractive. Carboxylic acids, offered as a mixture of 12 compounds, were repellent at the concentration tested. The addition of ammonia to the carboxylic acid mixture overruled the repellent effect of the latter. Combining ammonia with either lactic acid or the carboxylic acids did not enhance the attractiveness of ammonia alone. However, a synergistic effect was found when ammonia, lactic acid and the carboxylic acids were applied as a blend. Our findings indicate that An. gambiae s.s. relies on the combination of ammonia, lactic acid and carboxylic acids in its orientation to human hosts. The role of lactic acid in this tripartite synergism differs from that reported for the yellow fever mosquito Aedes aegypti.  相似文献   

4.
Odour baited traps have potential use in population surveillance of insect vectors of disease, and in some cases for vector population reduction. Established attractants for human host-seeking mosquitoes include a combination of CO(2) with L-lactic acid and ammonia, on top of which additional candidate compounds are being tested. In this field study in rural Gambia, using Latin square experiments with thorough randomization and replication, we tested nine different leading candidate combinations of chemical odorants for attractiveness to wild mosquitoes including anthropophilic malaria vectors, using modified Mosquito Magnet-X (MM-X) counterflow traps outside experimental huts containing male human sleepers. Highest catches of female mosquitoes, particularly of An. gambiae s.l. and Mansonia species, were obtained by incorporation of tetradecanoic acid. As additional carboxylic acids did not increase the trap catches further, this 'reference blend' (tetradecanoic acid with L-lactic acid, ammonia and CO(2)) was used in subsequent experiments. MM-X traps with this blend caught similar numbers of An. gambiae s.l. and slightly more Mansonia and Culex mosquitoes than a standard CDC light trap, and these numbers were not significantly affected by the presence or absence of human sleepers in the huts. Experiments with CO(2) produced from overnight yeast cultures showed that this organic source was effective in enabling trap attractiveness for all mosquito species, although at a slightly lower efficiency than obtained with use of CO(2) gas cylinders. Although further studies are needed to discover additional chemicals that increase attractiveness, as well as to optimise trap design and CO(2) source for broader practical use, the odour-baited traps described here are safe and effective for sampling host-seeking mosquitoes outdoors and can be incorporated into studies of malaria vector ecology.  相似文献   

5.
Differences between human individuals in their attractiveness to female mosquitoes have been reported repeatedly, but the underlying mechanisms are not well understood. Skin emanations from 27 human individuals, collected on glass marbles, were tested against ammonia in a dual-choice olfactometer to establish their degrees of attractiveness to anthropophilic Anopheles gambiae s.s. Giles (Diptera: Culicidae) mosquitoes. Ammonia was used as a standard odour source because of its proven attractiveness to An. gambiae s.s. Skin emanations from most volunteers attracted significantly more mosquitoes than ammonia. There were clear differences in the attractiveness of skin emanations from different volunteers relative to that of ammonia, as well as in the strength of the trap entry response. Consistent differences were observed when emanations from the three most and the three least attractive volunteers were tested pairwise. No gender or age effect was found for relative attractiveness or trap entry response. Emanations from volunteers with higher behavioural attractiveness elicited higher electroantennogram response amplitudes in two pairs, but in a third pair a higher electroantennogram response was found for the less attractive volunteer. These results confirm that odour contributes to the differences in attractiveness of humans to mosquitoes.  相似文献   

6.
BACKGROUND: Removal of exhaled air from total body emanations or artificially standardising carbon dioxide (CO2) outputs has previously been shown to eliminate differential attractiveness of humans to certain blackfly (Simuliidae) and mosquito (Culicidae) species. Whether or not breath contributes to between-person differences in relative attractiveness to the highly anthropophilic malaria vector Anopheles gambiae sensu stricto remains unknown and was the focus of the present study. METHODS: The contribution to and possible interaction of breath (BR) and body odours (BO) in the attraction of An. gambiae s.s. to humans was investigated by conducting dual choice tests using a recently developed olfactometer. Either one or two human subjects were used as bait. The single person experiments compared the attractiveness of a person's BR versus that person's BO or a control (empty tent with no odour). His BO and total emanations (TE = BR+BO) were also compared with a control. The two-person experiments compared the relative attractiveness of their TE, BO or BR, and the TE of each person against the BO of the other. RESULTS: Experiments with one human subject (P1) as bait found that his BO and TE collected more mosquitoes than the control (P = 0.005 and P < 0.001, respectively), as did his BO and the control versus his BR (P < 0.001 and P = 0.034, respectively). The TE of P1 attracted more mosquitoes than that of another person designated P8 (P < 0.021), whereas the BR of P8 attracted more mosquitoes than the BR of P1 (P = 0.001). The attractiveness of the BO of P1 versus the BO of P8 did not differ (P = 0.346). The BO from either individual was consistently more attractive than the TE from the other (P < 0.001). CONCLUSIONS: We demonstrated for the first time that human breath, although known to contain semiochemicals that elicit behavioural and/or electrophysiological responses (CO2, ammonia, fatty acids) in An. gambiae also contains one or more constituents with allomonal (~repellent) properties, which inhibit attraction and may serve as an important contributor to between-person differences in the relative attractiveness of humans to this important malaria vector.  相似文献   

7.
A dual port olfactometer was used to study the response of Anopheles gambiae Giles sensu stricto to odours of human and animal origin. Human odour consisted of human skin emanations collected on a nylon stocking, which was worn for 24 h. This was tested alone or together with 4.5% carbon dioxide, the concentration in human and cattle breath. Cattle odours consisted of cow skin emanations and/or carbon dioxide. Cow skin emanations were collected by tying a nylon stocking ('cow sock') around the hind leg of a cow for 12 h. Anopheles gambiae s.s. was consistently highly attracted by human odour, which is consistent with the high degree of anthropophily in this mosquito. Anopheles gambiae s.s. was not attracted by human or cattle equivalent volumes of carbon dioxide and this gas did not enhance the effect of human skin residues. Furthermore, A. gambiae s.s. showed a high degree of aversion to cow odour. When human odour and cow odour were tested together in the same port, mosquitoes were still highly attracted, indicating that whilst cattle odour may deter A. gambiae s.s., these mosquitoes can detect human odour in the presence of cattle odour. It was concluded that carbon dioxide plays a minor role in the host seeking behaviour of A. gambiae s.s., whilst host specific cues such as human skin residues play a major role and very effectively demonstrated anthropophilic behaviour in the laboratory.  相似文献   

8.
In a behavioural study we have investigated the role of lactic acid for the host preferences of yellow fever mosquitoes (Aedes aegypti) by comparing the attractiveness of rubbings from the hands of different human individuals and extracts obtained from skin rubbings from different mammals (Bos primigenius f. taurus, Capra aegagrus f. hircus, Felis silvestris f. catus and Homo sapiens). Certain human individuals were consistently more attractive to mosquitoes than others. Addition of lactic acid markedly increased the degree of attractiveness of formerly less attractive human odour samples and they were preferred over those which were originally the most attractive. There was almost no response to animal odour samples. In contrast to human samples, which contain a high amount of lactate, this compound could not be detected in samples from animals. When skin emanations from animals were combined with lactic acid, however, as many mosquitoes responded to odour samples of B. primigenius f. taurus and C. aegagrus f. hircus as did to human odours. All these data demonstrate that olfactory-based host preference of the anthropophilic mosquito A. aegypti is to a large extent due to differences in the amount of lactic acid in the odour samples.  相似文献   

9.

Background

Baited traps are potential tools for removal or surveillance of disease vectors. To optimize the use of counter-flow traps baited with human odor (nylon socks that had been worn for a single day) to capture wild mosquitoes in the Gambia, investigations were conducted at a field experimental site.

Methodology/Principal Findings

Experiments employing Latin square design were conducted with a set of six huts to investigate the effects of the following on overnight mosquito trap catches: (1) placement of traps indoors or immediately outdoors, CO2 supply, and presence of a human subject in the hut; (2) trap height for collecting mosquitoes immediately outdoors; (3) height and distance from hut; (4) interaction between multiple traps around a single hut and entry of mosquitoes into huts. A total of 106,600 adult mosquitoes (9.1% Anopheles gambiae s.l., 4.0% other Anopheles species) were collected over 42 nights. The high numbers of An. gambiae s.l. and other mosquitoes collected by odor-baited traps required CO2 but were largely independent of the presence of a person sleeping in the hut or of trap placement indoors or outdoors. For outdoor collection that is considered less intrusive, traps opening 15 cm above the floor of the hut veranda were more highly effective than traps at other heights or further from the hut. There was no significant evidence of saturation or competition by the traps, with multiple traps around a hut each collecting almost as many mosquitoes as single traps and no effect on the numbers of mosquitoes entering the huts.

Conclusions/Significance

The outdoor trapping protocol is convenient to compare attractiveness of different odors or synthetic chemicals to malaria vectors and other wild mosquitoes. The finding that such traps are reliably attractive in the presence or absence of a human volunteer encourages their potential development as standardised surveillance tools.  相似文献   

10.
Abstract.Laboratory colonies of the human malaria vectors Anopheles gambiae Giles and An. arabiensis Patton have distinct flight tones. If flight tone similarly distinguishes natural populations of these sympatric sibling species, it may play a role in reproductive isolation of swarms that are otherwise behaviourally identical. To assess the fidelity of flight tone differences in natural populations, flight tone was measured in the F1 progeny of mosquitoes of both species captured in western Kenya. Flight tone distributions of wild An . gambiae and An. arabiensis were similar to their laboratory conspecifics. However, interspecies comparisons of flight tone of wild mosquitoes revealed significantly different but overlapping distributions for both sexes. Furthermore, when the effect of body size on flight tone was determined, there was a positive correlation between wing length and flight tone for both sexes of An. gambiae and An. arabiensis , suggesting that mosquito size is a significant variable affecting flight tone. Although these findings diminish any practical benefit of flight tone as a diagnostic tool in species identification, its potential role in pre‐mating species recognition needs further investigation.  相似文献   

11.
The interaction between the African malaria vector Anopheles gambiae and its human host has traditionally been viewed within a bitrophic context, considering only the human and the mosquito. Recently, the influence of the Plasmodium parasite on the interaction has been recognized, because it affects the physiology and/or behaviour of humans and mosquitoes. However, studies on odour-mediated host-seeking behaviour of An. gambiae and other Diptera have provided evidence that a fourth group of organisms should be taken into consideration. Human skin microflora play a role in the production of odorous compounds that might function as kairomones for mosquitoes. Here, Marieta Braks, Rob Anderson and Bart Knols introduce the role of human microflora into the process of odour-mediated host selection and review the interaction in a multipartite context so as to identify research avenues that will enhance our limited knowledge of this aspect of malaria transmission.  相似文献   

12.
Do malaria parasites enhance the attractiveness of humans to the parasite's vector? As such manipulation would have important implications for the epidemiology of the disease, the question has been debated for many years. To investigate the issue in a semi-natural situation, we assayed the attractiveness of 12 groups of three western Kenyan children to the main African malaria vector, the mosquito Anopheles gambiae. In each group, one child was uninfected, one was naturally infected with the asexual (non-infective) stage of Plasmodium falciparum, and one harboured the parasite's gametocytes (the stage transmissible to mosquitoes). The children harbouring gametocytes attracted about twice as many mosquitoes as the two other classes of children. In a second assay of the same children, when the parasites had been cleared with anti-malarial treatment, the attractiveness was similar between the three classes of children. In particular, the children who had previously harboured gametocytes, but had now cleared the parasite, were not more attractive than other children. This ruled out the possibility of a bias due to differential intrinsic attractiveness of the children to mosquitoes and strongly suggests that gametocytes increase the attractiveness of the children.  相似文献   

13.
Endosymbiotic Wolbachia bacteria are potent modulators of pathogen infection and transmission in multiple naturally and artificially infected insect species, including important vectors of human pathogens. Anopheles mosquitoes are naturally uninfected with Wolbachia, and stable artificial infections have not yet succeeded in this genus. Recent techniques have enabled establishment of somatic Wolbachia infections in Anopheles. Here, we characterize somatic infections of two diverse Wolbachia strains (wMelPop and wAlbB) in Anopheles gambiae, the major vector of human malaria. After infection, wMelPop disseminates widely in the mosquito, infecting the fat body, head, sensory organs and other tissues but is notably absent from the midgut and ovaries. Wolbachia initially induces the mosquito immune system, coincident with initial clearing of the infection, but then suppresses expression of immune genes, coincident with Wolbachia replication in the mosquito. Both wMelPop and wAlbB significantly inhibit Plasmodium falciparum oocyst levels in the mosquito midgut. Although not virulent in non-bloodfed mosquitoes, wMelPop exhibits a novel phenotype and is extremely virulent for approximately 12-24 hours post-bloodmeal, after which surviving mosquitoes exhibit similar mortality trajectories to control mosquitoes. The data suggest that if stable transinfections act in a similar manner to somatic infections, Wolbachia could potentially be used as part of a strategy to control the Anopheles mosquitoes that transmit malaria.  相似文献   

14.
Using a dual-choice olfactometer, the role of L-lactic acid was investigated in relation to host-seeking and selection by female Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) mosquitoes in a Y-tube bioassay. L-lactic acid alone was not attractive, but it significantly augmented the attractiveness of CO2, skin odour and skin-rubbing extracts from humans and other vertebrates. Comparing the left and right index fingers of the same person, one could be made more attractive than the other by adding L-lactic acid to the air stream over that finger. The difference in L-lactic acid concentration between the two air streams offered to the mosquitoes fell within the natural range of variation emanating from a human hand, suggesting that L-lactic acid modulates intraspecific host selection by An. gambiae. Analysis of skin rubbings from various vertebrates (carnivores, chickens, primates, rodents, ungulates) indicated that humans have uniquely high levels of L-lactic acid on their skin. Tests with extracts of skin rubbings from cows and humans, with and without added L-lactic acid, suggest that naturally lower levels of L-lactic acid contribute to the lesser attractiveness of non-humans to An. gambiae s.s.  相似文献   

15.
Anopheles mosquitoes are major vectors of human malaria in Africa. Large variation exists in the ability of mosquitoes to serve as vectors and to transmit malaria parasites, but the molecular mechanisms that determine vectorial capacity remain poorly understood. We report that the hemocyte-specific complement-like protein TEP1 from the mosquito Anopheles gambiae binds to and mediates killing of midgut stages of the rodent malaria parasite Plasmodium berghei. The dsRNA knockdown of TEP1 in adults completely abolishes melanotic refractoriness in a genetically selected refractory strain. Moreover, in susceptible mosquitoes this knockdown increases the number of developing parasites. Our results suggest that the TEP1-dependent parasite killing is followed by a TEP1-independent clearance of dead parasites by lysis and/or melanization. Further elucidation of the molecular mechanisms of TEP1-mediated parasite killing will be of great importance for our understanding of the principles of vectorial capacity in insects.  相似文献   

16.
This study describes the use of ribosomal DNA probes to identify the species of individual mosquitoes in the Anopheles gambiae complex, a group of six morphologically identical mosquito species among which are two of the principal vectors of malaria in Africa. The DNA probes are sequences of DNA derived from the ribosomal genes of An. gambiae. Each probe reveals a different sized restriction enzyme fragment specific to each of the five species in the complex that were examined in this study: An. gambiae, An. arabiensis, An. quadriannulatus, An. melas and An. merus. The probes detect highly repeated sequences of DNA, thus the method is sufficiently sensitive to be applied to a small portion of a mosquito. Furthermore, because the DNA can be extracted from desiccated or alcohol preserved specimens, the test is compatible with other mosquito assays performed on dried specimens such as blood meal and malaria sporozoite antigen ELISAs. Determination of the nucleotide sequences that underlie the species-specific restriction enzyme site differences detected by these probes will lead to the development of synthetic DNA probes that can be used to identify an individual mosquito to species on the basis of a simple dot-blot or squash-blot.  相似文献   

17.
Field-collected mosquitoes of the two main malaria vectors in Africa, Anopheles gambiae sensu lato and Anopheles funestus, were screened for their midgut bacterial contents. The midgut from each blood-fed mosquito was screened with two different detection pathways, one culture independent and one culture dependent. Bacterial species determination was achieved by sequence analysis of 16S rRNA genes. Altogether, 16 species from 14 genera were identified, 8 by each method. Interestingly, several of the bacteria identified are related to bacteria known to be symbionts in other insects. One isolate, Nocardia corynebacterioides, is a relative of the symbiont found in the vector for Chagas' disease that has been proven useful as a paratransgenic bacterium. Another isolate is a novel species within the gamma-proteobacteria that could not be phylogenetically placed within any of the known orders in the class but is close to a group of insect symbionts. Bacteria representing three intracellular genera were identified, among them the first identifications of Anaplasma species from mosquitoes and a new mosquito-Spiroplasma association. The isolates will be further investigated for their suitability for a paratransgenic Anopheles mosquito.  相似文献   

18.
Abstract.  The anthropophilic malaria mosquito Anopheles gambiae sensu stricto responds to CO2 and human skin emanations. How these odorants affect the behaviour of this mosquito species is studied in an olfactometer. Carbon dioxide is released either as an homogeneous plume or in a turbulent fashion at two different positions from the trap entrance. Anopheles gambiae is deterred from entering a trap with CO2 as the only kairomone, when presented as an homogeneous or turbulent plume. This effect is completely overcome by the addition of skin emanations to the CO2 plume, with a high proportion of mosquitoes found in the trap with skin emanations. Rearrangement of the position of the turbulent CO2 source so that it is 5 cm downwind of the trap entrance overcomes the deterrent effect of CO2. Carbon dioxide alone, however, does not elicit higher proportions caught compared with clean air. Further studies with the CO2 source positioned 5 cm downwind of the trap entrance show that skin emanations alone result in fewer mosquitoes entering the trap than CO2+ skin emanations. Skin emanations induce more mosquitoes to fly into a trap than a synthetic blend of NH3+ l-lactic acid when both are combined with CO2. It is concluded that CO2 is a poor kairomone when offered alone and that its presence in the plume at the trap entrance deters mosquitoes from entering. By contrast, when positioned just downwind of the trap entrance, CO2 appears to guide mosquitoes to the vicinity of the trap, where skin emanations then become the principle attractant, causing the mosquito trap entry response. The results of the study have implications for the design of odour-baited traps for this mosquito species.  相似文献   

19.
In an olfactometer study on the response of the anthropophilic malaria mosquito Anopheles gambiae s.s. (Diptera, Culicidae) to human sweat it was found that freshly collected sweat, mostly of eccrine origin, was attractive, but that incubated sweat was significantly more attractive than fresh sweat. The behavioural response to l ‐lactic acid and ammonia, the main constituents of sweat, was investigated. l ‐lactic acid was attractive at one concentration only (11.11 mm ) and removal of the l ‐lactic acid from the sweat by enzymatic decomposition did not affect the attractiveness of sweat. Ammonia caused attraction over a range of 0.1–13.4 m on glass slides and at 0.84–8.40 μmol/min in an air stream. It is concluded that: human sweat contains kairomones for host‐seeking An. gambiae; ammonia is an important kairomone for this mosquito; and that l ‐lactic acid is not a prerequisite in the attraction of An. gambiae to sweat.  相似文献   

20.
Understanding the endogenous factors that drive the population dynamics of malaria mosquitoes will facilitate more accurate predictions about vector control effectiveness and our ability to destabilize the growth of either low- or high-density insect populations. We assessed whether variation in phenotypic traits predict the dynamics of Anopheles gambiae sensu lato mosquitoes, the most important vectors of human malaria. Anopheles gambiae dynamics were monitored over a six-month period of seasonal growth and decline. The population exhibited density-dependent feedback, with the carrying capacity being modified by rainfall (97% wAIC(c) support). The individual phenotypic expression of the maternal (p = 0.0001) and current (p = 0.040) body size positively influenced population growth. Our field-based evidence uniquely demonstrates that individual fitness can have population-level impacts and, furthermore, can mitigate the impact of exogenous drivers (e.g. rainfall) in species whose reproduction depends upon it. Once frontline interventions have suppressed mosquito densities, attempts to eliminate malaria with supplementary vector control tools may be attenuated by increased population growth and individual fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号