首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Chromosomes exist in the interphase nucleus as individual chromosome territories. It is unclear to what extent chromosome territories occupy particular positions with respect to each other and how structural rearrangements, such as translocations, affect chromosome organization within the cell nucleus. Here we analyze the relative interphase positioning of chromosomes in mouse lymphoma cells compared to normal splenocytes. We show that in a lymphoma cell line derived from an ATM(-/-) mouse, two translocated chromosomes are preferentially positioned in close proximity to each other. The relative position of the chromosomes involved in these translocations is conserved in normal splenocytes. Relative positioning of chromosomes in normal splenocytes is not due to their random distribution in the interphase nucleus and persists during mitosis. These observations demonstrate that the relative arrangement of chromosomes in the interphase nucleus can be conserved between normal and cancer cells and our data support the notion that physical proximity facilitates rearrangements between chromosomes.  相似文献   

2.
In interphase, chromosomes occupy defined nuclear volumes known as chromosome territories. To probe the biological consequences of the described nonrandom spatial positioning of chromosome territories in human lymphocytes, we performed an extensive FISH-based analysis of ionizing radiation-induced interchanges involving chromosomes 1, 4, 18 and 19. Since the probability of exchange formation depends strongly on the spatial distance between the damage sites in the genome, a preferential formation of exchanges between proximally positioned chromosomes is expected. Here we show that the spectrum of interchanges deviates significantly from one expected based on random chromosome positioning. Moreover, the observed exchange interactions between specific chromosome pairs as well as the interactions between homologous chromosomes are consistent with the proposed gene density-related radial distribution of chromosome territories. The differences between expected and observed exchange frequencies are more pronounced after exposure to densely ionizing neutrons than after exposure to sparsely ionizing X rays. These experiments demonstrate that the spatial positioning of interphase chromosomes affects the spectrum of chromosome rearrangements.  相似文献   

3.
Summary This paper has two parts. The first one is theoretical, whereas in the second, some experimenteal results are reported. Part 1: Theoretical Considerations. Comings' considerations on an ordered arrangement of chromatin in the interphase nucleus are used as a basis for further investigations and calculations in order to establish a preliminary model of the interphase nucleus. Information on the amount of DNA of a diploid human nucleus, on the degree of spiralization of chromatin threads found in electron microscopy, and measurements of salivary gland chromosomes was used to estimate the lengths of the entire interphase chromosomes. The number of fixing points-pores—was indirectly calculated proposing a model of an internal order of the chromatin threads. This number was found in concord with a direct calculation of the number of pores in the nuclear membrane based on results from electron microscopy. Part 2: Experimental Results and Discussion. In the second part of this study, an approach was made as to how to arrange chromosomes and chromosome segments in their proximity to each other. Results of cytogenetic studies of newborn babies and abortions, of cells from patients with Bloom's syndrome and Fanconi's anemia and normal cells treated with Mitomycin C and Trenimon, are thought to be informative under certain suppositions for the problem, which chromosome or chromosome parts are situated in proximity to each other. The symmetrical and equal interchanges seen, for example, in Bloom's syndrome are an indication of somatic pairing during the time of reunion. Therefore, the unequal interchanges in the same syndrome in which different chromosomes are involved should give evidence for proximity of nonhomologous chromosomes. Arguments for and against a temporal and spacial hypothesis for somatic pairing are discussed. The differing frequencies of chromosomes involved in Robertsonian translocations in man are informative for proximities of satellite regions at the nucleolus. Nucleolus and sex chromatin could be used as fixed points in a model of the interphase nucleus in which finally the absolute localization of the chromosomes will be discovered. The discussion points out promising methods for further investigations on the subject and mentions problems which could be attacked if the approach described here leads to a model of internal order in the interphase nucleus.This work was supported by the Deutsche Forschungsgemeinschaft within the Sonderforschungsbereich 35, Klinische Genetik.  相似文献   

4.

Background

In interphase nuclei of a wide range of species chromosomes are organised into their own specific locations termed territories. These chromosome territories are non-randomly positioned in nuclei which is believed to be related to a spatial aspect of regulatory control over gene expression. In this study we have adopted the pig as a model in which to study interphase chromosome positioning and follows on from other studies from our group of using pig cells and tissues to study interphase genome re-positioning during differentiation. The pig is an important model organism both economically and as a closely related species to study human disease models. This is why great efforts have been made to accomplish the full genome sequence in the last decade.

Results

This study has positioned most of the porcine chromosomes in in vitro cultured adult and embryonic fibroblasts, early passage stromal derived mesenchymal stem cells and lymphocytes. The study is further expanded to position four chromosomes in ex vivo tissue derived from pig kidney, lung and brain.

Conclusions

It was concluded that porcine chromosomes are also non-randomly positioned within interphase nuclei with few major differences in chromosome position in interphase nuclei between different cell and tissue types. There were also no differences between preferred nuclear location of chromosomes in in vitro cultured cells as compared to cells in tissue sections. Using a number of analyses to ascertain by what criteria porcine chromosomes were positioned in interphase nuclei; we found a correlation with DNA content.  相似文献   

5.
Chromosomes are non-randomly positioned in the mammalian interphase nucleus. It is not known how patterns of chromosome positions are established or to what degree spatial arrangements of chromosomes change during the cell cycle, especially during mitosis. Two reports have applied in vivo microscopy to track chromosomes in space and time. The results highlight the inherently imperfect and probabilistic nature of chromosome positioning in the cell nucleus.  相似文献   

6.
7.
Fusion of a cell in mitosis with a cell in interphase results in the condensation of chromatin in the interphase nucleus into chromosomes. Premature chromosome condensation is caused by certain proteins, called mitotic factors, that are present in the mitotic cell and are localized on chromosomes. Extracts from mitotic cells were used to immunize mice to produce monoclonal antibodies specific for cells in mitosis. Among the antibodies obtained, the MPM-4 antibody defines a 125-kD polypeptide antigen located on mitotic chromosomes by indirect immunofluorescence. Although the polypeptide antigen is present in approximately equal concentrations in extracts of interphase cells and mitotic cells, as revealed by immunoblots, it cannot be detected cytologically in the former. Cell fractionation experiments showed that the 125-kD antigen is found in the cytoplasm of interphase cells and metaphase cells, but is concentrated in fractions containing metaphase chromosomes, although not detectable in interphase nuclei. Even though the antigen is apparently primate-specific, it binds to mitotic chromosomes and prematurely condensed chromosomes in human-rodent cell hybrids without regard to the species of origin of the mitotic inducer. The presence of the antigen in the cytoplasm of interphase cells and the chromosomes of mitotic cells suggests a relationship between the presence of the antigen on chromosomes and the process of chromosome condensation and decondensation.  相似文献   

8.
One of the main genetic factors determining the functional activity of the genome in somatic cells, including brain nerve cells, is the spatial organization of chromosomes in the interphase nucleus. For a long time, no studies of human brain cells were carried out until high-resolution methods of molecular cytogenetics were developed to analyze interphase chromosomes in nondividing somatic cells. The purpose of the present work was to assess the potential of high-resolution methods of interphase molecular cytogenetics for studying chromosomes and the nuclear organization in postmitotic brain cells. A high efficiency was shown by such methods as multiprobe and quantitative fluorescence in situ hybridization (Multiprobe FISH and QFISH), ImmunoMFISH (analysis of the chromosome organization in different types of brain cells), and interphase chromosome-specific multicolor banding (ICS-MCB). These approaches allowed studying the nuclear organization depending on the gene composition and types of repetitive DNA of specific chromosome regions in certain types of brain cells (in neurons and glial cells, in particular). The present work demonstrates a high potential of interphase molecular cytogenetics for studying the structural and functional organizations of the cell nucleus in highly differentiated nerve cells. Analysis of interphase chromosomes of brain cells in the normal and pathological states can be considered as a promising line of research in modern molecular cytogenetics and cell neurobiology, i. e., molecular neurocytogenetics.  相似文献   

9.
One of the main genetic factors determining the functional activity of the genome in somatic cells, including brain nerve cells, is the spatial organization of chromosomes in the interphase nucleus. For a long time, no studies of human brain cells were carried out until high-resolution methods of molecular cytogenetics were developed to analyze interphase chromosomes in nondividing somatic cells. The purpose of the present work was to assess the potential of high-resolution methods of interphase molecular cytogenetics for studying chromosomes and the nuclear organization in postmitotic brain cells. A high efficiency was shown by such methods as multiprobe and quantitative fluorescence in situ hybridization (Multiprobe FISH and QFISH), ImmunoMFISH (analysis of the chromosome organization in different types of brain cells), and interphase chromosome-specific multicolor banding (ICS-MCB). These approaches allowed studying the nuclear organization depending on the gene composition and types of repetitive DNA of specific chromosome regions in certain types of brain cells (in neurons and glial cells, in particular). The present work demonstrates a high potential of interphase molecular cytogenetics for studying the structural and functional organizations of the cell nucleus in highly differentiated nerve cells. Analysis of interphase chromosomes of brain cells in the normal and pathological states can be considered as a promising line of research in modern molecular cytogenetics and cell neurobiology, i. e., molecular neurocytogenetics.  相似文献   

10.
11.
MOTIVATION: The position of chromosomes in the interphase nucleus is believed to be associated with a number of biological processes. Here, we present a web-based application that helps analyze the relative position of chromosomes during interphase in human cells, based on observed radiogenic chromosome aberrations. The inputs of the program are a table of yields of pairwise chromosome interchanges and a proposed chromosome geometric cluster. Each can either be uploaded or selected from provided datasets. The main outputs are P-values for the proposed chromosome clusters. SCHIP is designed to be used by a number of scientific communities interested in nuclear architecture, including cancer and cell biologists, radiation biologists and mathematical/computational biologists.  相似文献   

12.
Summary In 1885 Carl Rabl published his theory on the internal structure of the interphase nucleus. We have tested two predictions of this theory in fibroblasts grown in vitro from a female Chinese hamster, namely (1) the Rabl-orientation of interphase chromosomes and (2) the stability of the chromosome arrangement established in telophase throughout the subsequent interphase. Tests were carried out by premature chromosome condensation (PCC) and laser-UV-microirradiation of the interphase nucleus. Rabl-orientation of chromosomes was observed in G1 PCCs and G2 PCCs. The cell nucleus was microirradiated in G1 at one or two sites and pulse-labelled with 3H-thymidine for 2h. Cells were processed for autoradiography either immediately thereafter or after an additional growth period of 10 to 60h. Autoradiographs show unscheduled DNA synthesis (UDS) in the microirradiated nuclear part(s). The distribution of labelled chromatin was evaluated in autoradiographs from 1035 cells after microirradiation of a single nuclear site and from 253 cells after microirradiation of two sites. After 30 to 60h postincubation the labelled regions still appeared coherent although the average size of the labelled nuclear area fr increased from 14.2% (0h) to 26.5% (60h). The relative distance dr, i.e. the distance between two microirradiated sites divided by the diameter of the whole nucleus, showed a slight decrease with increasing incubation time. Nine metaphase figures were evaluated for UDS-label after microirradiation of the nuclear edge in G1. An average of 4.3 chromosomes per cell were labelled. Several chromosomes showed joint labelling of both distal chromosome arms including the telomeres, while the centromeric region was free from label. This label pattern is interpreted as the result of a V-shaped orientation of these particular chromosomes in the interphase nucleus with their telomeric regions close to each other at the nuclear edge. Our data support the tested predictions of the Rabl-model. Small time-dependent changes of the nuclear space occupied by single chromosomes and of their relative positions in the interphase nucleus seem possible, while the territorial organization of interphase chromosomes and their arrangement in general is maintained during interphase. The present limitations of the methods used for this study are discussed.Part of this work is included in the doctoral thesis of H. Baumann to be submitted to the Faculty of Biology of the University of HeidelbergPart of this work is included in the doctoral thesis of V. Teuber to be submitted to the Faculty of Medicine of the University of Freiburg i. Br.  相似文献   

13.
In contrast to those of metaphase chromosomes, the shape, length, and architecture of human interphase chromosomes are not well understood. This is mainly due to technical problems in the visualization of interphase chromosomes in total and of their substructures. We analyzed the structure of chromosomes in interphase nuclei through use of high-resolution multicolor banding (MCB), which paints the total shape of chromosomes and creates a DNA-mediated, chromosome-region-specific, pseudocolored banding pattern at high resolution. A microdissection-derived human chromosome 5-specific MCB probe mixture was hybridized to human lymphocyte interphase nuclei harvested for routine chromosome analysis, as well as to interphase nuclei from HeLa cells arrested at different phases of the cell cycle. The length of the axis of interphase chromosome 5 was determined, and the shape and MCB pattern were compared with those of metaphase chromosomes. We show that, in lymphocytes, the length of the axis of interphase chromosome 5 is comparable to that of a metaphase chromosome at 600-band resolution. Consequently, the concept of chromosome condensation during mitosis has to be reassessed. In addition, chromosome 5 in interphase is not as straight as metaphase chromosomes, being bent and/or folded. The shape and banding pattern of interphase chromosome 5 of lymphocytes and HeLa cells are similar to those of the corresponding metaphase chromosomes at all stages of the cell cycle. The MCB pattern also allows the detection and characterization of chromosome aberrations. This may be of fundamental importance in establishing chromosome analyses in nondividing cells.  相似文献   

14.
Background: Structural studies of fixed cells have revealed that interphase chromosomes are highly organized into specific arrangements in the nucleus, and have led to a picture of the nucleus as a static structure with immobile chromosomes held in fixed positions, an impression apparently confirmed by recent photobleaching studies. Functional studies of chromosome behavior, however, suggest that many essential processes, such as recombination, require interphase chromosomes to move around within the nucleus.Results: To reconcile these contradictory views, we exploited methods for tagging specific chromosome sites in living cells of Saccharomyces cerevisiae with green fluorescent protein and in Drosophila melanogaster with fluorescently labeled topoisomerase ll. Combining these techniques with submicrometer single-particle tracking, we directly measured the motion of interphase chromatin, at high resolution and in three dimensions. We found that chromatin does indeed undergo significant diffusive motion within the nucleus, but this motion is constrained such that a given chromatin segment is free to move within only a limited subregion of the nucleus. Chromatin diffusion was found to be insensitive to metabolic inhibitors, suggesting that it results from classical Brownian motion rather than from active motility. Nocodazole greatly reduced chromatin confinement, suggesting a role for the cytoskeleton in the maintenance of nuclear architecture.Conclusions: We conclude that chromatin is free to undergo substantial Brownian motion, but that a given chromatin segment is confined to a subregion of the nucleus. This constrained diffusion is consistent with a highly defined nuclear architecture, but also allows enough motion for processes requiring chromosome motility to take place. These results lead to a model for the regulation of chromosome interactions by nuclear architecture.  相似文献   

15.
Summary Laser UV microirradiation of Chinese hamster interphase cells combined with caffeine post-treatment produced different patterns of chromosome damage in mitosis following irradiation of a small area of the nucleus that may be classified in three categories: I) intact metaphase figures, II) chromosome damage confined to a small area of the metaphase spread, III) mitotic figures with damage on all chromosomes. Category III might be the consequence of a non-localized distortion of nuclear metabolism. By contrast, category II may reflect localized DNA damage induced by microirradiation, which could not be efficiently repaired due to the effect of caffeine. If this interpretation is right, in metaphase figures of category II chromosome damage should occur only at the irradiation site. The effect might then be used to investigate neighbourhood relationships of individual chromosomes in the interphase nucleus.  相似文献   

16.
17.
Individual interphase chromosome domains revealed by in situ hybridization   总被引:15,自引:0,他引:15  
Summary The position and arrangement of individual chromosomes in interphase nuclei were examined in mouse-human cell hybrids by in situ hybridization of biotinylated human DNA probes. Intense and even labeling of human chromosomes with little background was observed when polyethylene glycol and Tween-20 were included in hybridization solutions. Human interphase chromosomes were separated from each other in the nucleus, and were confined to well localized domains. Hybrid cells with a single human chromosome showed a reproducible position of this chromosome in the nucleus. Some chromosomes appeared to have a characteristic folding pattern in interphase. Optical section as well as electron microscopy of labeled regions revealed the presence of 0.2 m wide fibers in each interphase domain, as well as adjacent, locally extended 500 nm fibers. Such fibers are consistent with previously proposed structural models of interphase chromosomes.  相似文献   

18.
Global chromosome positions are transmitted through mitosis in mammalian cells   总被引:23,自引:0,他引:23  
We investigated positioning of chromosomes during the cell cycle in live mammalian cells with a combined experimental and computational approach. By non-invasive labeling of chromosome subsets and tracking by 4D imaging, we could show that no global rearrangements occurred in interphase. Using the same assay, we also observed a striking order of chromosomes throughout mitosis. By contrast, our computer simulation based on stochastic movements of individual chromosomes predicted randomization of chromosome order in mitosis. In vivo, a quantitative assay for single chromosome positioning during mitosis revealed strong similarities between daughter and mother cells. These results demonstrate that global chromosome positions are heritable through the cell cycle in mammalian cells. Based on tracking of labeled chromosomes and centromeres during chromosome segregation and experimental perturbations of chromosomal order, we propose that chromosome specific timing of sister chromatid separation transmits chromosomal positions from one cell generation to the next.  相似文献   

19.
Using fluorescence in situ hybridization with human band-specific DNA probes we examined the effect of ionizing radiation on the intra-nuclear localization of the heterochromatic region 9q12-->q13 and the euchromatic region 8p11.2 of similar sized chromosomes 9 and 8 respectively in confluent (G1) primary human fibroblasts. Microscopic analysis of the interphase nuclei revealed colocalization of the homologous heterochromatic regions from chromosome 9 in a proportion of cells directly after exposure to 4 Gy X-rays. The percentage of cells with paired chromosomes 9 gradually decreased to control levels during a period of one hour. No significant changes in localization were observed for chromosome 8. Using 2-D image analysis, radial and inter-homologue distances were measured for both chromosome bands. In unexposed cells, a random distribution of the chromosomes over the interphase nucleus was found. Directly after irradiation, the average inter-homologue distance decreased for chromosome 9 without alterations in radial distribution. The percentage of cells with inter-homologue distance <3 micro m increased from 11% in control cells to 25% in irradiated cells. In contrast, irradiation did not result in significant changes in the inter-homologue distance for chromosome 8. Colocalization of the heterochromatic regions of homologous chromosomes 9 was not observed in cells irradiated on ice. This observation, together with the time dependency of the colocalization, suggests an underlying active cellular process. The biological relevance of the observed homologous pairing remains unclear. It might be related to a homology dependent repair process of ionizing radiation induced DNA damage that is specific for heterochromatin. However, also other more general cellular responses to radiation-induced stress or change in chromatin organization might be responsible for the observed pairing of heterochromatic regions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号