首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 389 毫秒
1.
Sea anemones are a rich source of two classes of peptide toxins, sodium channel toxins and potassium channel toxins, which have been or will be useful tools for studying the structure and function of specific ion channels. Most of the known sodium channel toxins delay channel inactivation by binding to the receptor site 3 and most of the known potassium channel toxins selectively inhibit Kv1 channels. The following peptide toxins are functionally unique among the known sodium or potassium channel toxins: APETx2, which inhibits acid-sensing ion channels in sensory neurons; BDS-I and II, which show selectivity for Kv3.4 channels and APETx1, which inhibits human ether-a-go-go-related gene potassium channels. In addition, structurally novel peptide toxins, such as an epidermal growth factor (EGF)-like toxin (gigantoxin I), have also been isolated from some sea anemones although their functions remain to be clarified.  相似文献   

2.
Nine different voltage-gated sodium channel isoforms are responsible for inducing and propagating action potentials in the mammalian nervous system. The Nav1.7 channel isoform plays an important role in conducting nociceptive signals. Specific mutations of this isoform may impair gating behavior of the channel resulting in several pain syndromes. In addition to channel mutations, similar or opposite changes in gating may be produced by spider and scorpion toxins binding to different parts of the voltage-gated sodium channel. In the present study, we analyzed the effects of the α-scorpion toxin OD1 and 2 synthetic toxin analogs on the gating properties of the Nav1.7 sodium channel. All toxins potently inhibited channel inactivation, however, both toxin analogs showed substantially increased potency by more than one order of magnitude when compared with that of wild-type OD1. The decay phase of the whole-cell Na+ current was substantially slower in the presence of toxins than in their absence. Single-channel recordings in the presence of the toxins revealed that Na+ current inactivation slowed due to prolonged flickering of the channel between open and closed states. Our findings support the voltage-sensor trapping model of α-scorpion toxin action, in which the toxin prevents a conformational change in the domain IV voltage sensor that normally leads to fast channel inactivation.  相似文献   

3.
The Drosophila para sodium channel α subunit was expressed in Xenopus oocytes alone and in combination with tipE, a putative Drosophila sodium channel accessory subunit. Coexpression of tipE with para results in elevated levels of sodium currents and accelerated current decay. Para/TipE sodium channels have biophysical and pharmacological properties similar to those of native channels. However, the pharmacology of these channels differs from that of vertebrate sodium channels: (a) toxin II from Anemonia sulcata, which slows inactivation, binds to Para and some mammalian sodium channels with similar affinity (K d ≅ 10 nM), but this toxin causes a 100-fold greater decrease in the rate of inactivation of Para/TipE than of mammalian channels; (b) Para sodium channels are >10-fold more sensitive to block by tetrodotoxin; and (c) modification by the pyrethroid insecticide permethrin is >100-fold more potent for Para than for rat brain type IIA sodium channels. Our results suggest that the selective toxicity of pyrethroid insecticides is due at least in part to the greater affinity of pyrethroids for insect sodium channels than for mammalian sodium channels.  相似文献   

4.
Soluble venom and purified fractions of the theraposid spider Brachypelma albiceps were screened for insecticidal peptides based on toxicity to crickets. Two insecticidal peptides, named Ba1 and Ba2, were obtained after the soluble venom was separated by high performance liquid chromatography and cation exchange chromatography. The two insecticidal peptides contain 39 amino acid residues and three disulfide bonds, and based on their amino acid sequence, they are highly identical to the insecticidal peptides from the theraposid spiders Aphonopelma sp. from the USA and Haplopelma huwenum from China indicating a relationship among these genera. Although Ba1 and Ba2 were not able to modify currents in insect and vertebrate cloned voltage-gated sodium ion channels, they have noteworthy insecticidal activities compared to classical arachnid insecticidal toxins indicating that they might target unknown receptors in insect species. The most abundant insecticidal peptide Ba2 was submitted to NMR spectroscopy to determine its 3-D structure; a remarkable characteristic of Ba2 is a cluster of basic residues, which might be important for receptor recognition.  相似文献   

5.
6.
The hormathiid sea anemone Allantactis parasitica was found living as an epibiont on numerous species of gastropods at depths of 725-1100 m along the continental slope of eastern Canada. The proportion of bathyal gastropods hosting 1-6 sea anemones reached 72.5% in a single trawl. Although A. parasitica was occasionally found on other substrata (i.e. empty shells, pebbles), laboratory trials confirmed that they preferably associate with living gastropods. Settlement of planula larvae occurred significantly more often on the shells of live bathyal gastropods than on all other substrata present in the tanks. Juvenile sea anemones (∼ 1 mm diameter) readily moved from the mud or other inert substrata onto shells of burrowed bathyal gastropods. Conversely, larvae, juveniles and adults of A. parasitica never associated with any shallow-water gastropods when given the opportunity. Trials exposing predatory sea stars (Leptasterias polaris) from shallow and bathyal depths to bathyal gastropods (Buccinum undatum) with epibiotic A. parasitica, and to asymbiotic bathyal and shallow-water B. undatum, revealed adaptive behaviours in both prey and predator. Shallow-water gastropods (devoid of epibionts) reacted defensively to L. polaris, whereas bathyal gastropods relied mostly on their epibionts to protect them, thus falling prey to L. polaris when the epibionts were removed. L. polaris from bathyal depths typically ignored symbiotic gastropods, but they consistently preyed on asymbiotic ones, while L. polaris from shallow areas initially attempted to prey on all gastropods, but learned to avoid those harbouring sea anemones. Furthermore, living as epibionts afforded sea anemones a means to escape one of their own predators, the sea star Crossaster papposus. The mutualistic relationship between hormathiid sea anemones and bathyal gastropods from the NW Atlantic may have evolved in response to predation pressure.  相似文献   

7.
Acid-sensing ion channels (ASIC) are proton-gated sodium channels that have been implicated in pain transduction associated with acidosis in inflamed or ischemic tissues. APETx2, a peptide toxin effector of ASIC3, has been purified from an extract of the sea anemone Anthopleura elegantissima. APETx2 is a 42-amino-acid peptide cross-linked by three disulfide bridges. Its three-dimensional structure, as determined by conventional two-dimensional 1H-NMR, consists of a compact disulfide-bonded core composed of a four-stranded beta-sheet. It belongs to the disulfide-rich all-beta structural family encompassing peptide toxins commonly found in animal venoms. The structural characteristics of APETx2 are compared with that of PcTx1, another effector of ASIC channels but specific to the ASIC1a subtype and to APETx1, a toxin structurally related to APETx2, which targets the HERG potassium channel. Structural comparisons, coupled with the analysis of the electrostatic characteristics of these various ion channel effectors, led us to suggest a putative channel interaction surface for APETx2, encompassing its N terminus together with the type I-beta turn connecting beta-strands III and IV. This basic surface (R31 and R17) is also rich in aromatic residues (Y16, F15, Y32, and F33). An additional region made of the type II'-beta turn connecting beta-strands I and II could also play a role in the specificity observed for these different ion effectors.  相似文献   

8.
9.
Polyps of Actinia equina are the most common sea anemones in the rocky intertidal zone of the Mediterranean coast of Israel, where they occur in one of the southernmost populations of this species in the northern hemisphere. We examined effects of feeding rate on polyp growth at ambient sea temperature for this population. Under laboratory conditions, polyps were left unfed, or were fed with brine shrimp (Artemia) once every 2 weeks, once a week, or twice a week. Of the four experimental treatments, only feeding twice a week resulted in polyp growth; under all other regimes, the sea anemones lost body mass. We conclude that a high rate of feeding is required at sea temperatures in the eastern Mediterranean, where these sea anemones may have high metabolic rates relative to more northern populations.  相似文献   

10.
Bacillus thuringiensis Cry1A toxins, in contrast to other pore-forming toxins, bind two putative receptor molecules, aminopeptidase N (APN) and cadherin-like proteins. Here we show that Cry1Ab toxin binding to these two receptors depends on the toxins' oligomeric structure. Toxin monomeric structure binds to Bt-R1, a cadherin-like protein, that induces proteolytic processing and oligomerization of the toxin (Gómez, I., Sánchez, J., Miranda, R., Bravo A., Soberón, M., FEBS Lett. (2002) 513, 242-246), while the oligomeric structure binds APN, which drives the toxin into the detergent-resistant membrane (DRM) microdomains causing pore formation. Cleavage of APN by phospholipase C prevented the location of Cry1Ab oligomer and Bt-R1 in the DRM microdomains and also attenuates toxin insertion into membranes despite the presence of Bt-R1. Immunoprecipitation experiments demonstrated that initial Cry1Ab toxin binding to Bt-R1 is followed by binding to APN. Also, immunoprecipitation of Cry1Ab toxin-binding proteins using pure oligomeric or monomeric structures showed that APN was more efficiently detected in samples immunoprecipitated with the oligomeric structure, while Bt-R1 was preferentially detected in samples immunoprecipitated with the monomeric Cry1Ab. These data agrees with the 200-fold higher apparent affinity of the oligomer than that of the monomer to an APN enriched protein extract. Our data suggest that the two receptors interact sequentially with different structural species of the toxin leading to its efficient membrane insertion.  相似文献   

11.
Clostridial glucosylating cytotoxins, including Clostridium difficile toxins A and B, Clostridium novyi α-toxin, and Clostridium sordellii lethal toxin, are major virulence factors and causative agents of human diseases. These toxins mono-O-glucosylate (or mono-O-GlcNAcylate) a specific threonine residue of Rho/Ras-proteins, which is essential for the function of the molecular switches. Recently, a related group of glucosyltransferases from Legionella pneumophila has been identified. These Legionella glucosyltransferases modify the large GTPase elongation factor eEF1A at a serine residue by mono-O-glucosylation, thereby inhibiting protein synthesis of target cells. Recent results on structures, functions and biological roles of both groups of bacterial toxin glucosyltransferases will be discussed.  相似文献   

12.
13.
Gene families, which encode toxins, are found in many poisonous animals, yet there is limited understanding of their evolution at the nucleotide level. The release of the genome draft sequence for the sea anemone Nematostella vectensis enabled a comprehensive study of a gene family whose neurotoxin products affect voltage-gated sodium channels. All gene family members are clustered in a highly repetitive approximately 30-kb genomic region and encode a single toxin, Nv1. These genes exhibit extreme conservation at the nucleotide level which cannot be explained by purifying selection. This conservation greatly differs from the toxin gene families of other animals (e.g., snakes, scorpions, and cone snails), whose evolution was driven by diversifying selection, thereby generating a high degree of genetic diversity. The low nucleotide diversity at the Nv1 genes is reminiscent of that reported for DNA encoding ribosomal RNA (rDNA) and 2 hsp70 genes from Drosophila, which have evolved via concerted evolution. This evolutionary pattern was experimentally demonstrated in yeast rDNA and was shown to involve unequal crossing-over. Through sequence analysis of toxin genes from multiple N. vectensis populations and 2 other anemone species, Anemonia viridis and Actinia equina, we observed that the toxin genes for each sea anemone species are more similar to one another than to those of other species, suggesting they evolved by manner of concerted evolution. Furthermore, in 2 of the species (A. viridis and A. equina) we found genes that evolved under diversifying selection, suggesting that concerted evolution and accelerated evolution may occur simultaneously.  相似文献   

14.
Jellyfish, hydras, corals and sea anemones (phylum Cnidaria) are known for their venomous stinging cells, nematocytes, used for prey and defence. Here we show, however, that the potent Type I neurotoxin of the sea anemone Nematostella vectensis, Nv1, is confined to ectodermal gland cells rather than nematocytes. We demonstrate massive Nv1 secretion upon encounter with a crustacean prey. Concomitant discharge of nematocysts probably pierces the prey, expediting toxin penetration. Toxin efficiency in sea water is further demonstrated by the rapid paralysis of fish or crustacean larvae upon application of recombinant Nv1 into their medium. Analysis of other anemone species reveals that in Anthopleura elegantissima, Type I neurotoxins also appear in gland cells, whereas in the common species Anemonia viridis, Type I toxins are localized to both nematocytes and ectodermal gland cells. The nematocyte-based and gland cell-based envenomation mechanisms may reflect substantial differences in the ecology and feeding habits of sea anemone species. Overall, the immunolocalization of neurotoxins to gland cells changes the common view in the literature that sea anemone neurotoxins are produced and delivered only by stinging nematocytes, and raises the possibility that this toxin-secretion mechanism is an ancestral evolutionary state of the venom delivery machinery in sea anemones.  相似文献   

15.
16.
近几十年来,沙蜇的频繁暴发给东亚海域的海洋生态系统带来了广泛影响。在秋季,沙蜇成熟的雌雄水母体在沿岸水域聚集产卵,有性繁殖产生的受精卵发育成新的底栖螅状体,为螅状体种群数量进行补充。河口浅滩海域为沙蜇的繁育地,沿岸盐度较低,在秋季降雨期盐度多变,较低、多变的盐度可能对沙蜇有性繁殖阶段的早期发育产生重要作用,从而影响螅状体种群数量的补充。实验设置了4种不同盐度(15、20、25、30)试验组,在不同盐度下对沙蜇受精卵进行培养,探讨盐度对沙蜇早期发育过程中受精卵、浮浪幼虫发育以及早期螅状体生长及存活的影响。试验结果:沙蜇受精卵胚胎发育的适宜盐度为20,发育基本与盐度25、30同步,盐度15受精卵细胞发育迟缓,发育率显著降低;浮浪幼虫发育适宜盐度为20和25,两组浮浪幼虫附着变态率高于盐度15、30,盐度15时浮浪幼虫活力明显降低、发育迟缓,浮浪幼虫在盐度15时水中存活时间较长可达8 d,但附着时间集中在培养后的3、4天,与其他组相同;早期螅状体幼体适宜盐度为20、25、30,早期螅状体存活率、相对增长率及特定生长率均显著高于盐度15,三组间差异不显著。结果表明,盐度显著影响沙蜇有性繁殖阶段的早期发育,随着受精卵至螅状体的发育生长,其对盐度的适应范围逐步扩大。  相似文献   

17.
Shiga toxins consist of enzymatically active A and B subunit multimers. The A subunit of shiga-like toxins can be proteolytically cleaved into two parts, A1 and A2, with A1 being responsible for toxic activity. Antibody neutralizing the A1 subunit of shiga toxin may protect against infection of the enterohemorrhagic Escherichia coli (EHEC O157:H7). It was difficult to express the full-length A1 subunit of shiga toxin 2 (stx2A1) in a previous study. We have now analyzed the full-length of stx2A1 using bioinformatics software. The data show that the carboxyl terminal (of ~15 amino-acid residues) has strong hydrophobicity and low antigenicity. We cloned and expressed a truncated fragment of stx2A1 (15 amino-acid residues of the carboxyl terminal being removed), designated stx2a1, which can evoke a humoral immune response. Anti-Stx2a1 antibodies can neutralize the native shiga toxin 2 both in vivo and in vitro, which suggests that Stx2a1 serves as a candidate immunogen for a subunit vaccine that can also be used as the antigen to screen phage anti-shiga toxin antibody libraries. L. Liu and H. Zeng contributed equally to this study.  相似文献   

18.
In this study, we examine microbial communities of early developmental stages of the coral Porites astreoides by sequence analysis of cloned 16S rRNA genes, terminal restriction fragment length polymorphism (TRFLP), and fluorescence in situ hybridization (FISH) imaging. Bacteria are associated with the ectoderm layer in newly released planula larvae, in 4-day-old planulae, and on the newly forming mesenteries surrounding developing septa in juvenile polyps after settlement. Roseobacter clade-associated (RCA) bacteria and Marinobacter sp. are consistently detected in specimens of P. astreoides spanning three early developmental stages, two locations in the Caribbean and 3 years of collection. Multi-response permutation procedures analysis on the TRFLP results do not support significant variation in the bacterial communities associated with P. astreoides larvae across collection location, collection year or developmental stage. The results are the first evidence of vertical transmission (from parent to offspring) of bacteria in corals. The results also show that at least two groups of bacterial taxa, the RCA bacteria and Marinobacter, are consistently associated with juvenile P. astreoides against a complex background of microbial associations, indicating that some components of the microbial community are long-term associates of the corals and may impact host health and survival.  相似文献   

19.
Alternative splicing greatly contributes to the structural and functional diversity of voltage-gated sodium channels (VGSCs) by generating various isoforms with unique functional and pharmacological properties. Here, we identified a new optional exon 23 located in the linker between domains II and III, and four mutually exclusive exons (exons 27A, 27B, 27C, and 27D) in domains IIIS3 and IIIS4 of the sodium channel of Liposcelis bostrychophila (termed as LbVGSC). This suggested that more alternative splicing phenomena remained to be discovered in VGSCs. Inclusion of exon 27C might lead to generation of non-functional isoforms. Meanwhile, identification of three alternative exons (exons 11, 13A, and 13B), which were located in the linker between domains II and III, indicated that abundant splicing events occurred in the DSC1 ortholog channel of L. bostrychophila (termed as LbSC1). Exons 13A and 13B were generated by intron retention, and the presence of exon 13B relied on the inclusion of exon 13A. Exon 13B was specifically expressed in the embryonic stage and contained an in-frame stop codon, inclusion of which led to generation of truncated proteins with only the first two domains. Additionally, several co-occurring RNA editing events were identified in LbSC1. Furthermore, remarkable similarity between the structure and expression patterns of LbVGSC and LbSC1 were discovered, and a closer evolutionary relationship between VGSCs and DSC1 orthologs was verified. Taken together, the data provided abundant molecular information on VGSC and DSC1 orthologs in L. bostrychophila, a representative Psocoptera storage pest, and insights into the alternative splicing of these two channels.  相似文献   

20.
kappa-Conotoxin-PVIIA (kappa-PVIIA) belongs to a family of peptides derived from a hunting marine snail that targets to a wide variety of ion channels and receptors. kappa-PVIIA is a small, structurally constrained, 27-residue peptide that inhibits voltage-gated K channels. Three disulfide bonds shape a characteristic four-loop folding. The spatial localization of positively charged residues in kappa-PVIIA exhibits strong structural mimicry to that of charybdotoxin, a scorpion toxin that occludes the pore of K channels. We studied the mechanism by which this peptide inhibits Shaker K channels expressed in Xenopus oocytes with the N-type inactivation removed. Chronically applied to whole oocytes or outside-out patches, kappa-PVIIA inhibition appears as a voltage-dependent relaxation in response to the depolarizing pulse used to activate the channels. At any applied voltage, the relaxation rate depended linearly on the toxin concentration, indicating a bimolecular stoichiometry. Time constants and voltage dependence of the current relaxation produced by chronic applications agreed with that of rapid applications to open channels. Effective valence of the voltage dependence, zdelta, is approximately 0.55 and resides primarily in the rate of dissociation from the channel, while the association rate is voltage independent with a magnitude of 10(7)-10(8) M-1 s-1, consistent with diffusion-limited binding. Compatible with a purely competitive interaction for a site in the external vestibule, tetraethylammonium, a well-known K-pore blocker, reduced kappa-PVIIA's association rate only. Removal of internal K+ reduced, but did not eliminate, the effective valence of the toxin dissociation rate to a value <0.3. This trans-pore effect suggests that: (a) as in the alpha-KTx, a positively charged side chain, possibly a Lys, interacts electrostatically with ions residing inside the Shaker pore, and (b) a part of the toxin occupies an externally accessible K+ binding site, decreasing the degree of pore occupancy by permeant ions. We conclude that, although evolutionarily distant to scorpion toxins, kappa-PVIIA shares with them a remarkably similar mechanism of inhibition of K channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号