首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
中国农田土壤生态系统固碳现状和潜力   总被引:39,自引:1,他引:38  
研究在搜集和整理全国典型农业长期定位实验站数据的基础上,通过自建经验公式估算了不同管理措施下我国农田土壤的固碳能力和潜力.通过施用化肥、秸秆还田、施用有机肥和免耕措施,目前对我国农田土壤碳增加的贡献分别为40.51、23.89、35.83 Tg·a-1和1.17 Tg·a-1,合计为101.4 Tg·a-1,是我国目前能源活动碳总排放量的13.3%.通过情景分析发现,提高化肥施用量、秸秆还田量、有机肥施用量和推广免耕,可以使我国农田土壤的固碳量分别提高到94.91、42.23、41.38 Tg·a-1和3.58 Tg·a-1,合计为182.1Tg·a-1.农田土壤总的固碳潜力相当于目前我国能源活动碳排放量的23.9%,对于全球CO2减排具有重要的作用.  相似文献   

2.
南方双季稻田稻草还田的碳汇效应   总被引:3,自引:0,他引:3  
利用长期稻草还田定位试验和短期不同稻草还田模式试验,研究稻草还田对南方双季稻田土壤固碳、甲烷排放和综合碳汇的影响.结果表明:稻草还田能增加土壤有机碳,长期还田的耕层土壤碳汇年增长率为0.07 tC.hm-2·a-1,土壤有机碳的表观转化率随着稻草还田量的增加而减少.稻草还田导致稻田甲烷排放量显著增加,其中,NPK添加稻草(NPK+RS)处理早、晚稻期间甲烷排放通量比仅施NPK分别增加了75.0%和251.5% (P<O.01).稻田甲烷排放随着稻草还田量的增加而增加,在水稻产量和耕作方式相近的条件下,稻草(茬)的甲烷表观转化率接近.综合土壤固碳和甲烷排放的稻田净碳汇,NPK+RS处理负碳汇效应显著,基本与其水稻生物固碳接近,比稻草不还田处理(NPK)增加158.3%;不同还田模式中,稻草覆盖免耕处理能显著减少甲烷排放,其净碳汇(负值)比高桩翻耕处理减少50.9%,有利于水稻高产稳产.  相似文献   

3.
进入21世纪,农业节能减排逐渐引起人们的关注。运用能源碳排放计算模型,对德州市2003-2008年农业碳源、碳汇进行计算分析,结果表明:(1)目前德州市农业碳源现状为7.29TgCO2eq.a-1,其中由农业能源消费、土壤呼吸、化肥施用和牲畜饲养造成碳排放分别为2.81、2.12、0.93和1.43TgCO2eq.a-1;(2)农业碳汇现状能力为9.24TgCO2eq.a-1,包括由于土地利用变化造成的碳排放4.73TgCO2eq.a-1和通过施用有机肥和实施秸秆还田的固碳能力4.51TgCO2eq.a-1;(3)碳汇能力较碳源释碳量有所盈余,具有发展低碳农业的潜力。从减源、增汇两个方面提出德州市未来发展低碳农业的相关措施,如调整农业产业结构,改进土地利用方式、实行保护性耕作、提倡农村可再生能源利用、推广立体种养模式,发展种养结合的循环农业等。  相似文献   

4.
中国草地土壤生态系统固碳现状和潜力   总被引:12,自引:0,他引:12  
以国内长期定位试验的数据为基础,评价了我国草地生态系统的固碳现状和潜力.分析发现,通过减少畜牧承载量等方法恢复退化草地,我国草地土壤的有机碳库可以增加4561.62 Tg C ,主要分布在内蒙古、西藏和新疆.草场围栏、种草和退耕还草3种草地管理措施的固碳潜力分别是12.01、1.46 Tg·a-1和25.59 Tg·a-1,总计39.06 Tg·a-1.2004年是我国草地管理投资较多的年份,种草、退耕还草和草场围栏的工程面积均有较大的提高,3种措施新增的固碳能力分别为5.70、0.38 Tg·a-1和3.09 Tg·a-1,合计9.17 Tg·a-1.  相似文献   

5.
中国森林生态系统植被固碳现状和潜力   总被引:18,自引:0,他引:18  
根据近3次森林资源普查资料和六大林业工程规划估算了中国森林植被的固碳现状和潜力.我国森林植物的碳贮量从第4次森林清查(1989~1994年)的4220.45 Tg C增加到第6次森林清查(1999~2003年)的5156.71Tg C,平均年增长率为1.6%, 年固碳量为85.30 ~ 101.95Tg·a-1,主要集中在西藏、四川、内蒙古、云南、江西、广东、广西、福建和湖南等省份.根据我国林业工程建设规划,到2010年规划完成时,林业工程每年新增的固碳潜力为115.46 Tg·a-1,其中天然林资源保护工程、退耕还林工程、三北、长江流域等重点防护林建设工程、环北京地区防沙治沙工程和重点地区速生丰产用材林基地建设工程到2010年新增的固碳潜力分别为16.25、48.55、32.59、3.75和14.33 Tg·a-1.  相似文献   

6.
基于森林清查资料的江西和浙江森林植被固碳潜力   总被引:1,自引:0,他引:1  
Nie H  Wang SQ  Zhou L  Wang JY  Zhang Y  Deng ZW  Yang FT 《应用生态学报》2011,22(10):2581-2588
以我国江西、浙江两省的森林植被为研究对象,基于1999-2003年间第六次全国森林清查数据及收集的1030个亚热带森林样地文献资料,依据林分生长的经验方程,估算了两个地区森林2004-2013年的固碳潜力,并基于455个样点的调查数据研究了不同森林管理措施(纯林间种、间伐、施肥)对森林未来固碳潜力的影响.结果表明:第六次森林清查以来的10年(2004-2013)间,江西森林植被年均自然固碳潜力约11.37 Tg C·a-1(1Tg=1012g),而浙江省森林植被年均自然固碳潜力约4.34 Tg C·a-1.纯林间种对江西、浙江两省森林植被固碳潜力影响最大,其次为间伐抚育,施肥的影响最小,纯林间种、间伐和施肥3种森林管理措施使江西省森林植被固碳潜力分别提高(6.54±3.9)、(3.81±2.02)和(2.35±0.6) Tg C·a-1,浙江省森林植被固碳潜力分别提高(2.64±1.28)、(1.42±0.69)和(1.15±0.29) Tg C·a-1.  相似文献   

7.
耕作方式转变对小麦/玉米两熟农田土壤固碳能力的影响   总被引:7,自引:0,他引:7  
采用大田试验、室内分析与生产调研相结合的方法,研究了耕作方式对农田生态系统固碳能力的影响.结果表明:少、免耕以及秸秆还田等保护性耕作措施有利于土壤有机碳的累积;免耕秸秆还田(NTS)方式0~5cm土层土壤有机碳累积量比传统耕作(CTA)方式高18.0%,旋耕秸秆还田(RTS)0~5和5~10cm土层比CTA分别高17.6%和25.0%,而翻耕秸秆还田(CTS)方式10~30cm土层土壤总有机碳累积量比CTA高31.8%;CTA转变为NTS后,源于农田投入的碳排放减少了54.3kg.hm-2.a-1,而转变为CTS、RTS后,分别增加了46.9kg.hm-2.a-1和34.4kg.hm-2.a-1;综合土壤碳累积与农田投入碳排放可知,传统耕作转变为保护性耕作方式后可实现由"碳源"向"碳汇"的转变,而CTS、RTS、NTS3种耕作方式中以RTS的固碳能力最强,达1011.1kg.hm-2.a-1.  相似文献   

8.
以中国科学院辽宁沈阳农田生态系统国家野外科学观测研究站连续两年的试验平台为依托,以潮棕壤为供试土壤,开展了稳定性氮肥配合秸秆还田对水稻产量及N2O和CH4排放的影响研究,设置对照(CK)、尿素(U)、尿素+脲酶抑制剂+硝化抑制剂(U+I)、秸秆还田(S)、秸秆还田+尿素(S+U)、秸秆还田+尿素+脲酶抑制剂+硝化抑制剂(S+U+I)6个处理.结果表明: 与CK相比,尿素显著提高了水稻产量、N2O和CH4累积排放及全球增温潜势.硝化抑制剂和脲酶抑制剂与尿素配施可显著减缓N2O的累积排放.秸秆还田显著增加了N2O和CH4累积排放、全球增温潜势和温室气体排放强度.S+U+I处理水稻产量最高,但温室气体排放强度也显著高于其他处理;U+I处理产量略低于S+U+I,但温室气体排放强度最小.秸秆单独还田处理作物产量与对照相比无显著差异.在东北潮棕壤发育的水田中,S+U+I和U+I是相对较优的施肥模式.  相似文献   

9.
以中国科学院辽宁沈阳农田生态系统国家野外科学观测研究站连续两年的试验平台为依托,以潮棕壤为供试土壤,开展了稳定性氮肥配合秸秆还田对水稻产量及N2O和CH4排放的影响研究,设置对照(CK)、尿素(U)、尿素+脲酶抑制剂+硝化抑制剂(U+I)、秸秆还田(S)、秸秆还田+尿素(S+U)、秸秆还田+尿素+脲酶抑制剂+硝化抑制剂(S+U+I)6个处理.结果表明: 与CK相比,尿素显著提高了水稻产量、N2O和CH4累积排放及全球增温潜势.硝化抑制剂和脲酶抑制剂与尿素配施可显著减缓N2O的累积排放.秸秆还田显著增加了N2O和CH4累积排放、全球增温潜势和温室气体排放强度.S+U+I处理水稻产量最高,但温室气体排放强度也显著高于其他处理;U+I处理产量略低于S+U+I,但温室气体排放强度最小.秸秆单独还田处理作物产量与对照相比无显著差异.在东北潮棕壤发育的水田中,S+U+I和U+I是相对较优的施肥模式.  相似文献   

10.
农田土壤固碳措施的温室气体泄漏和净减排潜力   总被引:8,自引:0,他引:8  
逯非  王效科  韩冰  欧阳志云  郑华 《生态学报》2009,29(9):4993-5006
农田土壤固碳措施作为京都议定书认可的大气CO2减排途径受到了广泛关注.研究表明,农田土壤固碳措施在主要农业国家和全球都具有很大的固碳潜力.但是,实施农田土壤固碳措施有可能影响农业中化石燃料消耗和其他农业投入的CO2排放和非CO2温室气体排放.这些土壤碳库以外的温室气体排放变化可能抵消部分甚至全部土壤固碳效果,构成了农田土壤固碳措施的温室气体泄漏.因此,将土壤固碳和温室气体泄漏综合计算的净减排潜力成为了判定土壤固碳措施可行性的首要标准.综述总结了目前较受重视的一些农田措施(包括施用化学氮肥、免耕和保护性耕作、灌溉、秸秆还田、施用禽畜粪便以及污灌)的土壤固碳潜力,温室气体泄漏和净减排潜力研究成果.结果表明,温室气体泄漏可抵消以上措施土壤固碳效益的-241%~660%.建议在今后的研究中,应该关注土壤碳饱和、气候变化及土地利用变化对农田固碳措施温室气体泄漏和净减排潜力的评估结果的影响.  相似文献   

11.
Sources of methane (CH4) become highly variable for countries undergoing a heightened period of development due to both human activity and climate change. An urgent need therefore exists to budget key sources of CH4, such as wetlands (rice paddies and natural wetlands) and lakes (including reservoirs and ponds), which are sensitive to these changes. For this study, references in relation to CH4 emissions from rice paddies, natural wetlands, and lakes in China were first reviewed and then reestimated based on the review itself. Total emissions from the three CH4 sources were 11.25 Tg CH4 yr?1 (ranging from 7.98 to 15.16 Tg CH4 yr?1). Among the emissions, 8.11 Tg CH4 yr?1 (ranging from 5.20 to 11.36 Tg CH4 yr?1) derived from rice paddies, 2.69 Tg CH4 yr?1 (ranging from 2.46 to 3.20 Tg CH4 yr?1) from natural wetlands, and 0.46 Tg CH4 yr?1 (ranging from 0.33 to 0.59 Tg CH4 yr?1) from lakes (including reservoirs and ponds). Plentiful water and warm conditions, as well as its large rice paddy area make rice paddies in southeastern China the greatest overall source of CH4, accounting for approximately 55% of total paddy emissions. Natural wetland estimates were slightly higher than the other estimates owing to the higher CH4 emissions recorded within Qinghai‐Tibetan Plateau peatlands. Total CH4 emissions from lakes were estimated for the first time by this study, with three quarters from the littoral zone and one quarter from lake surfaces. Rice paddies, natural wetlands, and lakes are not constant sources of CH4, but decreasing ones influenced by anthropogenic activity and climate change. A new progress‐based model used in conjunction with more observations through model‐data fusion approach could help obtain better estimates and insights with regard to CH4 emissions deriving from wetlands and lakes in China.  相似文献   

12.
Zhang Y  Su S  Zhang F  Shi R  Gao W 《PloS one》2012,7(1):e29156

Background

Rice paddies have been identified as major methane (CH4) source induced by human activities. As a major rice production region in Northern China, the rice paddies in the Three-Rivers Plain (TRP) have experienced large changes in spatial distribution over the recent 20 years (from 1990 to 2010). Consequently, accurate estimation and characterization of spatiotemporal patterns of CH4 emissions from rice paddies has become an pressing issue for assessing the environmental impacts of agroecosystems, and further making GHG mitigation strategies at regional or global levels.

Methodology/Principal Findings

Integrating remote sensing mapping with a process-based biogeochemistry model, Denitrification and Decomposition (DNDC), was utilized to quantify the regional CH4 emissions from the entire rice paddies in study region. Based on site validation and sensitivity tests, geographic information system (GIS) databases with the spatially differentiated input information were constructed to drive DNDC upscaling for its regional simulations. Results showed that (1) The large change in total methane emission that occurred in 2000 and 2010 compared to 1990 is distributed to the explosive growth in amounts of rice planted; (2) the spatial variations in CH4 fluxes in this study are mainly attributed to the most sensitive factor soil properties, i.e., soil clay fraction and soil organic carbon (SOC) content, and (3) the warming climate could enhance CH4 emission in the cool paddies.

Conclusions/Significance

The study concluded that the introduction of remote sensing analysis into the DNDC upscaling has a great capability in timely quantifying the methane emissions from cool paddies with fast land use and cover changes. And also, it confirmed that the northern wetland agroecosystems made great contributions to global greenhouse gas inventory.  相似文献   

13.
Huang Y  Zhang W  Zheng X H  Han S H  Yu Y Q 《农业工程》2006,26(4):980-987
Methane is one of the principal greenhouse gases. Irrigated rice paddies are recognized as contributing to atmospheric methane concentration. Methane emissions from rice paddies are among the most uncertain estimates in rice-growing countries. Efforts have been made over the last decade to estimate CH4 emissions from Chinese rice paddies via the model method. However, these estimates are very vague due to different models and upscaling methods. A reduction in these uncertainties may be achieved by coupling field-scale models with regional databases. The objective of this article is to develop a methodology of coupling a CH4 emission model with regional databases by which CH4 emissions from Chinese rice paddies can then be estimated. CH4MOD, a model for simulating CH4 emissions from rice paddies with minimal input by using commonly available parameters, is of great potential in terms of upscaling as it has provided a realistic estimate of the observed results from various soils, climates and agricultural practices. By linking spatial databases to CH4MOD, CH4 emissions from Chinese rice paddies in the 2000 rice-growing season were simulated on a day-by-day basis. The spatial databases were created by GIS with a spatial resolution of 10km10km, including soil sand percentage, amounts of crop straw and roots from the previous season and farm manure, the water management pattern, dates of rice transplanting and harvesting, acreage of rice planted, rice grain yield and daily air temperature. ARCGIS software was used to meet all GIS needs, including data access, projection definition, overlaying of different vector layers, creation of grids (a raster format of ARCGIS software) by converting vector data, and the data conversion between grids and ASCII formats. Methane emissions from rice paddies in mainland China in the 2000 rice-growing season were estimated to be 6.02 Tg (1 Tg = 109 kg). Of the total, approximately 49% (2.93Tg) is emitted during the single rice-growing season, and 27% (1.63Tg) and 24% (1.46Tg) are from the early and late rice-growing seasons respectively. It was concluded that regional CH4 emissions from rice paddies could be estimated by coupling CH4MOD with regional databases with a high spatial resolution. A further effort should be made to improve the quality of the spatial databases, especially in terms of the amount of added organic matter and the water regime. It is also necessary to evaluate the uncertainties of the present estimates in order to improve the overall accuracy.  相似文献   

14.
Methane is one of the principal greenhouse gases. Irrigated rice paddies are recognized as contributing to atmospheric methane concentration. Methane emissions from rice paddies are among the most uncertain estimates in rice-growing countries. Efforts have been made over the last decade to estimate CH4 emissions from Chinese rice paddies via the model method. However, these estimates are very vague due to different models and upscaling methods. A reduction in these uncertainties may be achieved by coupling field-scale models with regional databases. The objective of this article is to develop a methodology of coupling a CH4 emission model with regional databases by which CH4 emissions from Chinese rice paddies can then be estimated. CH4MOD, a model for simulating CH4 emissions from rice paddies with minimal input by using commonly available parameters, is of great potential in terms of upscaling as it has provided a realistic estimate of the observed results from various soils, climates and agricultural practices. By linking spatial databases to CH4MOD, CH4 emissions from Chinese rice paddies in the 2000 rice-growing season were simulated on a day-by-day basis. The spatial databases were created by GIS with a spatial resolution of 10km×10km, including soil sand percentage, amounts of crop straw and roots from the previous season and farm manure, the water management pattern, dates of rice transplanting and harvesting, acreage of rice planted, rice grain yield and daily air temperature. ARCGIS software was used to meet all GIS needs, including data access, projection definition, overlaying of different vector layers, creation of grids (a raster format of ARCGIS software) by converting vector data, and the data conversion between grids and ASCII formats. Methane emissions from rice paddies in mainland China in the 2000 rice-growing season were estimated to be 6.02 Tg (1 Tg = 109 kg). Of the total, approximately 49% (2.93Tg) is emitted during the single rice-growing season, and 27% (1.63Tg) and 24% (1.46Tg) are from the early and late rice-growing seasons respectively. It was concluded that regional CH4 emissions from rice paddies could be estimated by coupling CH4MOD with regional databases with a high spatial resolution. A further effort should be made to improve the quality of the spatial databases, especially in terms of the amount of added organic matter and the water regime. It is also necessary to evaluate the uncertainties of the present estimates in order to improve the overall accuracy.  相似文献   

15.
Nouchi  Isamu  Hosono  Tatsuo  Sasaki  Kaori 《Plant and Soil》1997,195(2):233-245
Rice paddies emit not only methane but also several volatile sulfur compounds such as dimethyl sulfide (DMS: CH3SCH3). However, little is known about DMS emission from rice paddies. Fluxes of methane and DMS, and the concentrations of methane and several volatile sulfur compounds including hydrogen sulfide (H2S), carbonyl disulfide (CS2), methyl mercaptan (CH3SH) and DMS in soil water and flood water were measured in four lysimeter rice paddies (2.5 × 4 m, depth 2.0 m) once per week throughout the entire cultivation period in 1995 in Tsukuba, Japan. The addition of exogenous organic matter (rice straw) was also examined for its influence on methane or DMS emissions. Methane fluxes greatly differed between treatments in which rice straw had been incorporated into the paddy soil (rice straw plot) and plots without rice straw (mineral fertilizer plot). The annual methane emission from the rice straw plots (37.7 g m-2) was approximately 8 times higher than that from the mineral fertilizer plots (4.8 g m-2). Application of rice straw had little influence on DMS fluxes. Significant diurnal and seasonal changes in DMS fluxes were observed. Peak DMS fluxes were found around noon. DMS was emitted from the flood water in the early growth stage of rice and began to be emitted from rice plants during the middle stage. DMS fluxes increased with the growth of rice plants and the highest flux, 15.1 µg m-2 h-1, was recorded before heading. DMS in the soil water was negligible during the entire cultivation period. These facts indicate that the DMS emitted from rice paddies is produced by metabolic processes in rice plants. The total amount of DMS emitted from rice paddies over the cultivated period was estimated to be approximately 5–6 mg m-2. CH3SH was emitted only from flood water during the first month after flooding.  相似文献   

16.

Background and aims

The rice production is experiencing a shift from conventionally seedling-transplanted (TPR) to direct-seeded (DSR) cropping systems in Southeast Asia. Besides the difference in rice crop establishment, water regime is typically characterized as water-saving moist irrigation for DSR and flooding-midseason drainage-reflooding and moist irrigation for TPR fields, respectively. A field experiment was conducted to quantify methane (CH4) and nitrous oxide (N2O) emissions from the DSR and TPR rice paddies in southeast China.

Methods

Seasonal measurements of CH4 and N2O fluxes from the DSR and TPR plots were simultaneously taken by static chamber-GC technique.

Results

Seasonal fluxes of CH4 averaged 1.58 mg m?2 h?1 and 1.02 mg m?2 h?1 across treatments in TPR and DSR rice paddies, respectively. Compared with TPR cropping systems, seasonal N2O emissions from DSR cropping systems were increased by 49 % and 46 % for the plots with or without N application, respectively. The emission factors of N2O were estimated to be 0.45 % and 0.69 % of N application, with a background emission of 0.65 and 0.95 kg N2O-N ha?1 under the TPR and DSR cropping regimes, respectively. Rice biomass and grain yield were significantly greater in the DSR than in the TPR cropping systems. The net global warming potential (GWP) of CH4 and N2O emissions were comparable between the two cropping systems, while the greenhouse gas intensity (GHGI) was significantly lower in the DSR than in the TPR cropping systems.

Conclusions

Higher grain yield, comparable GWP, and lower GHGI suggest that the DSR instead of conventional TPR rice cropping regime would weaken the radiative forcing of rice production in terms of per unit of rice grain yield in China, and DSR rice cropping regime could be a promising rice development alternative in mainland China.  相似文献   

17.
Straw return has been widely recommended as an environmentally friendly practice to manage carbon (C) sequestration in agricultural ecosystems. However, the overall trend and magnitude of changes in soil C in response to straw return remain uncertain. In this meta‐analysis, we calculated the response ratios of soil organic C (SOC) concentrations, greenhouse gases (GHGs) emission, nutrient contents and other important soil properties to straw addition in 176 published field studies. Our results indicated that straw return significantly increased SOC concentration by 12.8 ± 0.4% on average, with a 27.4 ± 1.4% to 56.6 ± 1.8% increase in soil active C fraction. CO2 emission increased in both upland (27.8 ± 2.0%) and paddy systems (51.0 ± 2.0%), while CH4 emission increased by 110.7 ± 1.2% only in rice paddies. N2O emission has declined by 15.2 ± 1.1% in paddy soils but increased by 8.3 ± 2.5% in upland soils. Responses of macro‐aggregates and crop yield to straw return showed positively linear with increasing SOC concentration. Straw‐C input rate and clay content significantly affected the response of SOC. A significant positive relationship was found between annual SOC sequestered and duration, suggesting that soil C saturation would occur after 12 years under straw return. Overall, straw return was an effective means to improve SOC accumulation, soil quality, and crop yield. Straw return‐induced improvement of soil nutrient availability may favor crop growth, which can in turn increase ecosystem C input. Meanwhile, the analysis on net global warming potential (GWP) balance suggested that straw return increased C sink in upland soils but increased C source in paddy soils due to enhanced CH4 emission. Our meta‐analysis suggested that future agro‐ecosystem models and cropland management should differentiate the effects of straw return on ecosystem C budget in upland and paddy soils.  相似文献   

18.

Aims

Two pot experiments in a “walk-in” growth chamber with controlled day and night temperatures were conducted to investigate the influence of elevated temperatures along with rice straw incorporation on methane (CH4) and nitrous oxide (N2O) emissions as well as rice yield.

Methods

Three temperature regimes–29/25, 32/25, and 35/30 °C (Exp. I) and 29/22, 32/25, and 35/28 °C (Exp. II), representing daily maxima/minima were used in the study. Two amounts of rice straw (0 and 6 t ha?1) were applied with four replications in each temperature regime. CH4 and N2O emissions as well as soil redox potential (Eh) were monitored weekly throughout the rice-growing period.

Results

Elevated temperatures increased CH4 emission rates, with a more pronounced effect from flowering to maturity. The increase in emissions was further enhanced by incorporation of rice straw. A decrease in soil Eh to <?100 mV and CH4 emissions was observed early in rice straw–incorporated pots while the soil without straw did not reach negative Eh levels (Exp. I) or showed a delayed decrease (Exp. II). Moreover, soil with high organic C (Exp. II) had higher CH4 emissions. In contrast to CH4 emissions, N2O emissions were negligible during the rice-growing season. The global warming potential (GWP) was highest at high temperature with rice straw incorporation compared with low temperature without rice straw. On the other hand, the high temperature significantly increased spikelet sterility and reduced grain yield (p?<?0.05).

Conclusions

Elevated temperature increased GWP while decreased rice yield. This suggests that global warming may result in a double negative effect: higher emissions and lower yields.  相似文献   

19.

Aims

A pot study spanning four consecutive crop seasons was conducted to compare the effects of successive rice straw biochar/rice straw amendments on C sequestration and soil fertility in rice/wheat rotated paddy soil.

Methods

We adopted 4.5 t ha?1, 9.0 t ha?1 biochar and 3.75 t ha?1 straw for each crop season with an identical dose of NPK fertilizers.

Results

We found no major losses of biochar-C over the 2-year experimental period. Obvious reductions in CH4 emission were observed from rice seasons under the biochar application, despite the fact that the biochar brought more C into the soil than the straw. N2O emissions with biochar were similar to the controls without additives over the 2-year experimental period. Biochar application had positive effects on crop growth, along with positive effects on nutrient (N, P, K, Ca and Mg) uptake by crop plants and the availability of soil P, K, Ca and Mg. High levels of biochar application over the course of the crop rotation suppressed NH3 volatilization in the rice season, but stimulated it in the wheat season.

Conclusions

Converting straw to biochar followed by successive application to soil is viable for soil C sequestration, CH4 mitigation, improvements of soil and crop productivity. Biochar soil amendment influences NH3 volatilization differently in the flooded rice and upland wheat seasons, respectively.  相似文献   

20.
控释氮肥对抗除草剂转基因水稻田土壤甲烷排放的影响   总被引:3,自引:0,他引:3  
周文鳞  娄运生 《生态学报》2014,34(16):4555-4560
采用温室盆栽和静态箱-气相色谱法,研究了控释氮肥对抗除草剂转基因水稻和亲本常规水稻稻田土壤甲烷(CH4)排放的影响。供试土壤为潴育型水稻土,氮肥种类为尿素和控释氮肥。结果表明,与对照(尿素)相比,控释氮肥提高了水稻分蘖数、株高、生物量及产量。水稻品种对CH4季节性排放规律没有明显影响,CH4排放通量基本表现为,自水稻移栽后逐渐升高,移栽后62—92 d出现峰值,而后逐渐降低至水稻收获。与对照相比,控释氮肥可显著降低CH4排放通量和全生育期累积排放量。抗除草剂转基因水稻稻田土壤CH4排放通量和累积排放量均显著低于亲本常规水稻。研究认为,一次性基施控释氮肥和种植抗除草剂转基因水稻对有效减缓稻田甲烷排放具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号