首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
A family of autosomal-dominant diseases including May-Hegglin anomaly, Fechtner syndrome, Sebastian syndrome, Alport syndrome, and Epstein syndrome are commonly characterized by giant platelets and thrombocytopenia. In addition, there may be leukocyte inclusions, deafness, cataracts, and nephritis, depending on the syndrome. Mutations in the human nonmuscle myosin IIA heavy chain gene (MYH9) have been linked to these diseases. Two of the recently described mutations, N93K and R702C, are conserved in smooth and nonmuscle myosins from vertebrates and lie in the head domain of myosin. Interestingly, the two mutations lie within close proximity in the three-dimensional structure of myosin. These two mutations were engineered into a heavy meromyosin-like recombinant fragment of nonmuscle myosin IIA, which was expressed in baculovirus along with the appropriate light chains. The R702C mutant displays 25% of the maximal MgATPase activity of wild type heavy meromyosin and moves actin filaments at half the wild type rate. The effects of the N93K mutation are more dramatic. This heavy meromyosin has only 4% of the maximal MgATPase activity of wild type and does not translocate actin filaments in an in vitro motility assay. Biochemical characterization of the mutant is consistent with this mutant being unable to fully adopt the "on" conformation.  相似文献   

2.
Nonmuscle myosin heavy chain IIA (NMMHC IIA, gene code: MYH9) plays a critical role in physiological and pathological functions. A homology model of NMMHC IIA was constructed based on the crystal structure of smooth muscle myosin II. Blebbistatin, a myosin II ATPase inhibitor, had been found to bind to NMMHC IIA with Leu228 as the important amino acid residue and van der Waals contacts as the main force of the interaction. The final complex demonstrated that the destruction of the salt bridge occurred between the Arg204 and Glu427 residues when blebbistatin was present. Molecular dynamic simulation of the complex showed that the binding affinity of blebbistatin to NMMHC IIA was strongly sensitive to the nucleotide binding region and actin binding region. The disturbance of the two regions increased the enhancement of the binding cavity with blebbistatin and resulted in a slightly more expanded conformation in the nucleotide binding region and actin binding region. A combined pharmacophore- and docking-based virtual screening was performed to identify several saponins as potential inhibitors for NMMHC IIA. These findings introduce new insights on the binding mode of blebbistatin and NMMHC IIA and novel leading compounds from natural products for NMMHC IIA-related diseases.  相似文献   

3.
To determine the prevalence of early-onset Alzheimer disease (EOAD) and of autosomal dominant forms of EOAD (ADEOAD), we performed a population-based study in the city of Rouen (426,710 residents). EOAD was defined as onset of disease at age <61 years, and ADEOAD was defined as the occurrence of at least three EOAD cases in three generations. Using these stringent criteria, we calculated that the EOAD and ADEOAD prevalences per 100,000 persons at risk were 41.2 and 5.3, respectively. We then performed a mutational analysis of the genes for amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) in 34 families with ADEOAD ascertained in France. In 19 (56%) of these families, we identified 16 distinct PSEN1 missense mutations, including 4 (Thr147Ile, Trp165Cys, Leu173Trp, and Ser390Ile) not reported elsewhere. APP mutations, including a novel mutation located at codon 715, were identified in 5 (15%) of the families. In the 10 remaining ADEOAD families and in 9 additional autosomal dominant Alzheimer disease families that did not fulfill the strict criteria for ADEOAD, no PSEN1, PSEN2, or APP mutation was identified. These results show that (1) PSEN1 and APP mutations account for 71% of ADEOAD families and (2) nonpenetrance at age <61 years is probably infrequent for PSEN1 or APP mutations.  相似文献   

4.
5.
In the nematode Caenorhabditis elegans, animals mutant in the gene encoding the protein product of the unc-45 gene (UNC-45) have disorganized muscle thick filaments in body wall muscles. Although UNC-45 contains tetratricopeptide repeats (TPR) as well as limited similarity to fungal proteins, no biochemical role has yet been found. UNC-45 reporters are expressed exclusively in muscle cells, and a functional reporter fusion is localized in the body wall muscles in a pattern identical to thick filament A-bands. UNC-45 colocalizes with myosin heavy chain (MHC) B in wild-type worms as well as in temperature-sensitive (ts) unc-45 mutants, but not in a mutant in which MHC B is absent. Surprisingly, UNC-45 localization is also not seen in MHC B mutants, in which the level of MHC A is increased, resulting in near-normal muscle thick filament structure. Thus, filament assembly can be independent of UNC-45. UNC-45 shows a localization pattern identical to and dependent on MHC B and a function that appears to be MHC B-dependent. We propose that UNC-45 is a peripheral component of muscle thick filaments due to its localization with MHC B. The role of UNC-45 in thick filament assembly seems restricted to a cofactor for assembly or stabilization of MHC B.  相似文献   

6.
7.
8.
A Dictyostelium discoideum myosin heavy chain kinase has been purified 14,000-fold to near homogeneity. The enzyme has a Mr = 130,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and greater than 700,000 as determined by gel filtration on Bio-Gel A-1.5m. The enzyme has a specific activity of 1 mumol/min X mg when assayed at a Dictyostelium myosin concentration of 0.3 mg/ml. A maximum of 2 mol of phosphate/mol of myosin is incorporated by the kinase, and the phosphorylated amino acid is threonine. Phosphate is incorporated only into the myosin heavy chains, not into the light chains. The actin-activated Mg2+-ATPase of Dictyostelium myosin is inhibited 70-80% following maximal phosphorylation with the kinase. The myosin heavy chain kinase requires 1-2 mM Mg2+ for activity and is most active at pH 7.0-7.5. The activity of the enzyme is not significantly altered by the presence of Ca2+, Ca2+ and calmodulin, EGTA, cAMP, or cGMP. When incubated with Mg2+ and ATP, phosphate is incorporated into the myosin heavy chain kinase, perhaps by autophosphorylation.  相似文献   

9.
Activation of CD38 in lymphokine-activated killer (LAK) cells involves interleukin-8 (IL8)-mediated protein kinase G (PKG) activation and results in an increase in the sustained intracellular Ca(2+) concentration ([Ca(2+)](i)), cADP-ribose, and LAK cell migration. However, direct phosphorylation or activation of CD38 by PKG has not been observed in vitro. In this study, we examined the molecular mechanism of PKG-mediated activation of CD38. Nonmuscle myosin heavy chain IIA (MHCIIA) was identified as a CD38-associated protein upon IL8 stimulation. The IL8-induced association of MHCIIA with CD38 was dependent on PKG-mediated phosphorylation of MHCIIA. Supporting these observations, IL8- or cell-permeable cGMP analog-induced formation of cADP-ribose, increase in [Ca(2+)](i), and migration of LAK cells were inhibited by treatment with the MHCIIA inhibitor blebbistatin. Binding studies using purified proteins revealed that the association of MHCIIA with CD38 occurred through Lck, a tyrosine kinase. Moreover, these three molecules co-immunoprecipitated upon IL8 stimulation of LAK cells. IL8 treatment of LAK cells resulted in internalization of CD38, which co-localized with MHCIIA and Lck, and blebbistatin blocked internalization of CD38. These findings demonstrate that the association of phospho-MHCIIA with Lck and CD38 is a critical step in the internalization and activation of CD38.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号