首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 190 毫秒
1.
The effect of intragastric administration of acetylcholine on serum and antral gastrin concentrations of rats has been examined using a radioimmunoassay and quantitative electron microscopy. Exposure of the stomach of rats, previously fasted for 24h, to 2% acetylcholine for either 0.5 or 2h resulted in a significant 4--5 fold increase in serum gastrin concentrations to levels similar to those found in fed animals. Such treatment produced no detectable change in antral gastrin concentration or in the number or electron density of secretory granules in the G cells. This lack of detectable change in the G cells was not unexpected since our calculations suggest that less than 10% of the total gastrin stored in the antrum is released over 2h as a result of the stimulation with acetylcholine. The proportion of electron-lucent secretory granules was, however, markedly increased by prolonged fixation in aldehydes. The increase was similar in both ACh stimulated and control animals. These results indicate that the ultrastructural appearance of G cell secretory granules in influenced far more by the conditions of fixation than by the release of gastrin. They therefore cast considerable doubt on the hypothesis that gastrin is released by molecular dispersion from the granules.  相似文献   

2.
Summary The ultrastructure of gastrin cells in the rat antrum was analyzed with standardized and quantitative planimetric methods. Resting and active cells were compared. The gastrin cells were activated by removal of the acidproducing part of the stomach (fundectomy). As a result the serum gastrin concentrations were greatly elevated. Compared with gastrin cells in fasted control rats the gastrin cells in fundectomized rats were increased in number, contained fewer cytoplasmic granules, increased amount of endoplasmic reticulum, and an enlarged Golgi area.Generally, the secretory granules of the gastrin cell displayed a wide range of electron density from highly electron-dense to electron-lucent. They exhibited certain characteristic features: 1) Electron-dense granules made up a greater proportion of the total granule population in active gastrin cells than in resting cells. 2) Electron-dense granules were more frequent near the Golgi stacks than in the periphery of the cell. 3) Electron-dense granules were smaller in size than the electron-lucent granules; hence, small electron-dense granules probably represent young granules (progranules), while large, electron-lucent granules represent mature (old) granules. 4) Electron-dense granules invariably displayed a more intense immunoreactivity than electron-lucent granules.The gastrins are generated from a large precursor molecule. The posttranslational processing of this precursor is reflected in the gastrin-component pattern. The gastrin-component pattern in antral extracts of fundectomized and normal fasting rats differed in that the proportion of the gastrin-4-like component was reduced, whereas the gastrin-34-like component was increased in the fundectomized rats. The results suggest a greater proportion of small gastrin components in the mature granules than in the newly formed ones, presumably due to more extensive conversion of larger forms into smaller forms with a longer granule half-life. As a result gastrin-17-and gastrin-34-like components make up a larger proportion of total gastrin in active gastrin cells than in resting gastrin cells.The findings were presented at the Meeting of the European Gastro-Club, Erlangen, October 1980 (R. Håkanson, J.F. Rehfeld, M. Ekelund, and F. Sundler 1981)  相似文献   

3.
Summary In mammals, neurotensin cells occur scattered in the epithelium of the jejunum-ileum. In chicken, neurotensin cells are abundant in the region of the gizzard-duodenal junction (antrum) where they occur intermingled with numerous somatostatin and gastrin cells. The neurotensin cells in chicken, dog and man were identified at the electron microscopic level by immunocytochemistry, using the consecutive semithin/ultrathin section technique. They contain numerous electron dense cytoplasmic granules, predominantly in the basal portion of the cell. It was shown that these granules are the storage site for neurotensin. The neurotensin granules are round, highly electron dense and of about the same size in the different species examined (mean diameter 260–290 nm). in dog and man the granules have a tightly applied surrounding membrane while in the chicken a relatively electron lucent zone separates the electron dense core from the granule membrane. The ultrastructure of the neurotensin granules in chicken is some-what reminiscent of that of the gastrin granules. The mean diameter of the gastrin granules in chicken antrum is 230 nm; for the somatostatin granules the mean diameter is 305 nm.  相似文献   

4.
In mammals, neurotensin cells occur scattered in the epithelium of the jejunum-ileum. In chicken, neurotensin cells are abundant in the region of the gizzard-duodenal junction (antrum) where they occur intermingled with numerous somatostatin and gastrin cells. The neurotensin cells in chicken, dog and man were identified at the electron microscopic level by immunocytochemistry, using the consecutive semithin/ultrathin section technique. They contain numerous electron dense cytoplasmic granules, pre-dominantly in the basal portion of the cell. It was shown that these granules are the storage site for neurotensin. The neurotensin granules are round, highly electron dense and of about the same size in the different species examined (mean diameter 260--290 nm). In dog and man the granules have a tightly applied surrounding membrane while in the chicken a relatively electron lucent zone separates the electron dense core from the granule membrane. The ultrastructure of the neurotensin granules in chicken is somewhat reminiscent of that of the gastrin granules. The mean diameter of the gastrin granules in chicken antrum is 230 nm; for the somatostatin granules the mean diameter is 305 nm.  相似文献   

5.
Young male and female New Zealand white rabbits were given a daily subcutaneous injection of reserpine (Serpasil, Ciba; 3 mg/kg) for two days and were sacrificed 24 hours after the last injection. The subclavian glomera (aortic bodies) were processed for electron microscopy to determine the effects of this biogenic amine depleting agent on the electron-opaque cytoplasmic granules of the parenchymal type I cells. Observations of glutaraldehyde-osmium tetroxide fixed glomera from reserpinized animals showed a slight decrease in granule density of the type I cells. Glomera fixed in glutaraldehyde and incubated in potassium dichromate (pH 4.1) demonstrated a reduction in granule opacity following reserpine treatment. Control glomera incubated in potassium dichromate displayed electron-opaque granules. These results indicate that reserpine does deplete the amines without granule disappearance or changes in granule population. The positive reaction of the control tissue granules to potassium dichromate incubation suggests that the predominant biogenic amines in the electron-opaque granules are unsubstituted monoamines. Persistence of the opaque granules following reserpinization and glutaraldehyde-osmium tetroxide double fixation, may be due to amine-binding protein within the granules. The mode of granule depletion could not be ascertained with certainty.  相似文献   

6.
In Wistar rats the intraveneous injection of streptozotocin (65 mg/kg body weight) caused a permanent hyperglycemia. After 5 days there were lesions in the exocrine parenchyme of the pancreas and its nerve fibers. Pathological changes were found in cytoplasm, cell membrane, nucleus and all other cell organelles, too. The zymogen granules remaining after extensive degranulation may disintegrate in two different ways: 1. Shrinking of the granules and formation of a hale between granule membrane and core, the electronic density of which is decreased; indistinct demonstrability of the granule membrane and finally its decomposition. 2. Shrinking of the granules, decrease of the electron density and either homogeneous or mainly peripheral arrangement of the disintegrated material of the granules; irregular shape of the granules and splitting of their membranes.  相似文献   

7.
Summary The ultrastructure and cytochemistry of the secretory granules of the male hamster submandibular salivary gland were studied. After fixation in glutaraldehyde followed by osmium tetroxide the granules exhibit a characteristic bipartite substructure, with an electron lucid crescenteric rim and a more dense central core. A differentiation into two regions of the granules could also be visualized in specimens primarily fixed in Millonig's osmium tetroxide or in potassium permanganate. The electron lucid peripheral portion of the membrane bounded secretory granules further displays a strong positive reaction after staining of ultrathin sections with the periodic acid-chromic acid-(PA-CrA)-silver technique. The strong periodate reactivity of the rim relative to the core, suggests a difference in mucin composition of the two granule regions. With the PA-CrA-silver staining technique a positive reaction was also observed within the Golgi apparatus of the acinar cells.  相似文献   

8.
Summary The effect of feeding on serum and antral immunoreactive gastrin (IRG) concentrations and on the ultrastructural appearance of antral G-cell granules has been examined. Serum and tissue IRG concentrations were dependent upon the length of time (12 or 48 h) the rats had been fasted before receiving food; IRG release was biphasic; the first peak was more pronounced in rats fasted 12h. Antral tissue IRG content increased significantly postprandially. An initial depletion of antral IRG was seen in rats fasted 48 h. Examination of the subcellular distribution of antral IRG revealed more of the 5–15 min postprandal total IRG in the cytoplasm and less in the secretory granules.Ultrastructurally, G-cells from fasting rats contained mainly electron-dense granules. Five minutes postprandially numerous electron-lucent granules were observed. More electron dense granules were apparent 60 and 120 min postprandially. Fasting rats had the highest G-cell granule density index; a significantly lower index was observed 5 min postprandially. Indices at 60 and 120 min postprandially increased but were still lower than the fasting index. These studies indicate that gastrin biosynthesis is necessary for food stimulated gastrin release and that the electron density of the G-cells' granules is not an accurate reflection of the G-cell gastrin content.The authors thank Elisabeth Bothe, Heidi Dörler and Heide Karl for technical assistance and the Deutsche Forschungsgemeinschaft (Bonn-Bad Godesberg, Grant Cr 20/7), the Atkinson Charitable Foundation and the Canadian MRC for financial support  相似文献   

9.
Summary The appearance of neurosecretory granules in the crab sinus gland was studied after fixation at different pHs. Whereas at pH 7.0 the neurosecretory granules were pleomorphic with respect to electron density, at pH 5.0 or 6.0 all the granules remained electron dense. The possible role of maturation as an explanation of this observation is discussed.ERA 493 CNRS  相似文献   

10.
Summary Colour change in the eel resulted in marked ultrastructural changes in the pre-dominating (Type II) secretory cells of the pars intermedia of the pituitary. The effects on these cells of transferring eels from white to black backgrounds for periods of up to 56 days were: a) hypertrophy of the rough endoplasmic reticulum, which increased from 12 to 35% of the cytoplasmic volume; b) loss of secretory granules which decreased from 38 to 5% of the cytoplasmic volume; c) development of a system of fine (25–35 nm) tubules located especially at the secretory poles of the cells but also found in the region of the Golgi apparatus. The tubules were seen to connect with the plasma membrane, with the limiting membrane of the secretory granules, and in one instance to connect a granule with the plasma membrane. After glutaraldehyde fixation at pH 5, electron dense material similar to that found in the secretory granules was observed in the lumen of many of the tubules.The changes that occurred in black background eels are taken to indicate that the Type II cells of the pars intermedia are responsible for MSH secretion, particularly since these changes were reversed by returning eels to white backgrounds. The cytoplasmic tubules found in Type II cells may indicate a process for MSH release which does not involve granule extrusion, but rather direct transport of material from the Golgi apparatus to the cell membrane.The electron microscope facilities used in this investigation were funded by the Medical Research Council.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号