首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The circadian profiles of cortisol and dehydroepiandrosterone sulphate (DHEA-S) were analyzed in a homogeneous group of 15 young normally cycling women, at 4 times of the menstrual cycle: early follicular (EF), late follicular (LF), early luteal (EL) and late luteal (LL) stages. The circatrigintan variations of the same hormones were also evaluated. Population-mean cosinor analysis allowed the demonstration of a highly significant circadian periodicity for both variables in any of the 4 stages of the menstrual cycle; on the other hand, the same computation failed to demonstrate a significant circatrigintan periodicity. In each of the stages considered, the circadian acrophase of DHEA-S was delayed in comparison to that of cortisol, being located in the early afternoon hours. The demonstration of a clear-cut circadian oscillation in serum DHEA-S prompts studies on possible chrono-abnormalities of the steroid production in women with hyperandrogenic diseases.  相似文献   

2.
Anterior pituitary glands were removed from 27 intact cycling rhesus monkeys sacrificed in the early (Day 2), mid (Days 6--9) and late (Days 11--12) follicular phase, and in the early and late luteal phase (3--5 and 10--15 days after the midcycle luteinizing hormone (LH) surge). Assignment of cycle stage was confirmed by the pattern of circulating steroid and gonadotropin levels seen in the blood samples taken daily throughout the cycle. The anterior pituitary glands were weighed, stored at -30 degrees C and assayed for LH and follicle-stimulating hormone (FSH) content by specific radioimmunoassays. Serum estradiol levels and pituitary LH and FSH contents rose simultaneously during the follicular phase. After the preovulatory gonadotropin surge, pituitary LH content was low and invariant. Pituitary FSH content reached a nadir in the early luteal phase and tended to rise in the late luteal phase. Multiple correlation analyses revealed that there is a positive correlation between rising levels of estradiol in the circulation and pituitary LH (p = 0.003) and FSH (p = 0.017) content, and that there is a significant negative correlation between circulating progesterone levels and pituitary FSH content (p = 0.002). Pituitary LH content is less strongly related to circulating progesterone levels. There was no significant difference in the wet weights of the anterior pituitary glands during the five phases of the menstrual cycle studied.  相似文献   

3.
The male effect is currently only used during seasonal or lactational anoestrus because the response is thought to be blocked in cyclic females by periods of elevated progesterone. In this study, we tested whether cyclic, female goats would respond to male exposure with an increase in pulsatile LH secretion. During May (breeding season; Southern Hemisphere) the cycles of 16 Australian Cashmere goats were synchronised using intravaginal progesterone pessaries. Pessary insertion was staggered to produce groups in their early luteal (EL; n=8) and late luteal phases (LL; n=8). The LL group was retrospectively subdivided into mid-luteal (ML; n=4) and late luteal (LL; n=4) groups due to differences in oestrous cycle length that emerged during the study. Male exposure stimulated an increase in LH pulse frequency in the EL and LL groups (P<0.01) but not in the ML group (P>0.1). This increase was accompanied by an increase in basal and mean concentrations of LH in the LL group (P<0.05) but not in EL (P<0.1) or ML (P>0.1) group. There was no effect of male exposure on LH pulse amplitude (P>0.1). Progesterone concentrations differed among all groups on the day of male exposure (P<0.05) and declined significantly over the 12-h sampling period in the LL group (P<0.05). Prolactin concentrations declined in the EL group but did not change significantly in the ML or LL group. In conclusion, male exposure induced an increase in pulsatile LH in goats in the early and late luteal phases of the oestrous cycle. The high concentrations of progesterone in females in the mid-luteal phase appeared to block the male effect.  相似文献   

4.
Application of the ram effect during the breeding season has been previously disregarded because the ewe reproductive axis is powerfully inhibited by luteal phase progesterone concentrations. However, anovulatory ewes treated with exogenous progestagens respond to ram introduction with an increase in LH concentrations. We therefore tested whether cyclic ewes would respond to ram introduction with an increase in pulsatile LH secretion at all stages of the estrous cycle. We did two experiments using genotypes native to temperate or Mediterranean regions. In Experiment 1 (UK), 12 randomly cycling, North of England Mule ewes were introduced to rams midway through a frequent blood-sampling regime. Ewes in the early (EL; n=3) [corrected] and late luteal (LL; n=6) phase responded to ram introduction with an increase in LH pulse frequency and mean and basal concentration [corrected] of LH (at least P<0.05). In Experiment 2 (Australia), the cycles of 32 Merino ewes were synchronised using intravaginal progestagen pessaries. Pessary insertion was staggered to produce eight ewes at each stage of the estrous cycle: follicular (F), early luteal (EL), mid-luteal (ML) and late luteal (LL). In all stages of the cycle, ewes responded to ram introduction with an increase in LH pulse frequency (P<0.01); EL, ML and LL ewes also had an increase in mean LH concentration (P<0.05). In conclusion, ram introduction to cyclic ewes stimulated an increase in pulsatile LH secretion, independent of ewe genotype or stage of the estrous cycle.  相似文献   

5.
This work investigates the estrogenic role of the dominant follicle with regard to regulation of plasma FSH and LH concentration. Eight Holstein-Friesian cows were used for aspiration of the dominant follicle using ultrasound guidance during the early, mid and late stages of the luteal phase. Blood samples were collected at 15-min intervals from 4 h before until 7 h after aspiration. Plasma progesterone concentration increased from 0.7 to 7.2 ng mL-1 from early to mid luteal phase and then fell slightly to 5.9 ng mL-1 in the late luteal phase, but remained unaffected by follicle puncture. The follicular aspirate contained a thousandfold higher estradiol, than plasma concentration but its estradiol:progesterone ratio remained at around 2 at each stage of the luteal phase. Aspiration caused plasma estradiol concentration to fall from 1.4 to 0.7, 1.8 to 1.0 and 1.7 to 0.8 pg mL-1 in the early, mid and late stages of the luteal phase, respectively (P < 0.05). At the same time, mean plasma FSH concentration was increased from 1.1 to 1.8, 1.7 to 2.9 and 0.8 to 1.9 ng mL-1 (P < 0.05), respectively. The results suggest that estradiol secreted from dominant follicles selectively regulates gonadotropin secretion, since aspiration of the dominant follicle at any stage of the cycle affected circulating FSH but did not appear to influence the mean LH concentration.  相似文献   

6.
We have characterized the degree of asymmetry of ovarian steroid secretion in the luteal phase of the menstrual cycle in rhesus and cynomolgus monkeys. Femoral blood levels of FSH, LH, progesterone, estradiol and 17-hydroxyprogesterone were determined. In addition, laparotomies were performed in the early, mid or late luteal phase to facilitate localization of the corpus luteum and collection of ovarian venous blood. We conclude that: 1) the ovary bearing the active corpus luteum contributes virtually all of the progesterone entering peripheral circulation in the luteal phase; 2) the ipsilateral ovary secretes more 17-hydroxyprogesterone than the contralateral one, although both are active in the luteal phase; and 3) the asymmetrical secretion of estradiol was manifest only in the early and mid-luteal phase, with ovarian symmetry being reestablished in the late luteal phase.  相似文献   

7.
Preclinical research has demonstrated that cognitive function may be influenced by estradiol (E2) and progesterone (P4) concentrations, although few cognition studies involve normally cycling females. The present study examined cognitive performance in normally cycling female cynomolgus macaques (n = 14), a species with similarities to humans in brain organization and a nearly identical menstrual cycle to women. Initial assessments compared cognitive measures to circulating concentrations of E2 and P4 (n = 12). Once a relationship was characterized between hormones and cognitive performance, the menstrual cycle was divided into four distinct phases: early follicular (EF), late follicular (LF), early luteal (EL) and late luteal (LL), verified by the onset of menses and serum concentrations of E2 and P4. Concentrations of E2 were highest during the LF phase and P4 concentrations peaked during the EL phase. All monkeys were trained on two cognitive tasks: reversal learning, involving simple discrimination (SD) and reversal (SDR), which measured associative learning and behavioral flexibility, respectively (n = 3–4 per phase) and a delayed match-to-sample (DMS) task which assessed working memory (n = 11). P4 concentrations were positively correlated with number of trials and errors during acquisition of SD performance, but not during acquisition of the SDR task or maintenance of the reversal-learning task. Across the menstrual cycle, significantly fewer errors were made in the SDR task during the LF phase, when E2 concentrations were high and P4 concentrations low. Working memory, assessed with the DMS task, was not consistently altered based on previously characterized menstrual cycle phases. These findings demonstrate a relationship between P4, E2 and cognitive performance in normally cycling cynomolgus monkeys that is task dependent. Knowledge of these interactions may lead to a better understanding of sex-specific cognitive performance.  相似文献   

8.
A group of fourteen men (73 ± 5 yr of age), and eighteen women (77 ± 7 yr of age) institutionalized at the Berceni Clinical Hospital, Bucharest, Romania, were studied over a 24-hr span once during each season (winter, spring, summer and fall). All subjects followed a diurnal activity pattern with rest at night and ate three meals per day with breakfast at about 0830, lunch at about 1300 and dinner at about 1830. The meals were similar, although not identical for all subjects during all seasons. On each day of sampling blood was collected at 4-hr intervals over a 24-hr span. Seventeen hormonal variables were determined by radioimmunoassay. Statistically significant circadian rhythms were detected and quantitated by population mean cosinor analysis in pooled data from all four seasons in both sexes for ACTH, aldosterone, Cortisol, C-peptide, dehydroepiandrosterone-sulfate (DHEA-S), immunoreactive insulin, prolactin, 17-OH progesterone, testosterone, total T4 and TSH. In women, estradiol and progesterone also were determined and showed a circadian rhythm during all seasons. Total T, and FSH showed circadian rhythm detection by cosinor analysis in the men only; LH showed no consistent circadian rhythm as group phenomenon in men or women.

A circannual rhythm was detected using the circadian means of each subject at each season as input for the population mean cosinor in the women for ACTH, C-peptide, DHEA-S, FSH, LH, progesterone, 17-OH progesterone and TSH. In the men, a circannual rhythm was detected for ACTH, FSH, insulin, LH, testosterone and T3. There were phase differences between men and women in ACTH, FSH and LH. In those functions in which both the circadian and circannual rhythms were statistically significant, a comparison of the amplitudes showed in the women a higher circannual rather than circadian amplitude for DHEA-S. In 17-OH progesterone, TSH and C-peptide, the circadian amplitude in women was larger. In men, the circannual amplitude of T3 was larger than the circadian amplitude and in insulin the circadian amplitude was larger than the circannual amplitude. There was no statistically significant difference between the circadian and circannual amplitudes in the women in ACTH and progesterone and in the men in ACTH and testosterone.  相似文献   

9.
Daily plasma concentrations of FSH, LH, oestradiol-17 beta and progesterone were compared for 12 cycles with a short luteal phase and 19 cycles with a luteal phase of normal length (i.e. cycles in which the luteal phase lasted 12 or more days). FSH and LH concentrations were suppressed in short luteal-phase cycles in the early follicular phase and the length of the follicular phase was prolonged (median duration, 14.5 days, range 13-21 days: compared with 12 days, range 9-17, in control cycles; P less than 0.025). Preovulatory oestradiol-17 beta values and the mid-cycle concentrations of FSH and LH were similar in both groups. Plasma progesterone values in the luteal phase were similar in both groups over the 2nd to 5th days inclusive after the midcycle LH peak but declined in the short luteal phases thereafter. In short luteal-phase cycles, menstruation occurred in the presence of higher levels of oestradiol-17 beta and progesterone than in cycles of normal length and the rise of gonadotrophin in the late luteal phase of the cycle was delayed. These findings suggest that in cycles with a short luteal phase there is a lack of synchrony between the ovarian and menstrual events.  相似文献   

10.
Serum growth-promoting activity measured upon lymphocytes, sulfation activity and radioimmunoassayable somatomedin C (Sm-C) levels were measured in sera from women during the menstrual cycle. The data showed that: estradiol, progesterone, LH or FSH added in vitro do not increase the 3H-thymidine uptake into lymphocytes; the serum thymidine activity decreases during the luteal stage of the cycle, and is negatively correlated with the progesterone levels; the sulfation factor and Sm-C levels do not have significant variations during the menstrual cycle, and the GH maximum values are attained during the luteal stage.  相似文献   

11.
Ten chronically hemiovariectomized cynomolgus and rhesus monkeys were luteectomized 5.5 +/- 0.3 days after the midcycle luteinizing hormone (LH) and follicle-stimulating hormone (FSH) surge in two consecutive cycles. The corpus luteum (CL) was removed, weighed, dispersed with collagenase and the luteal cells counted. Luteal cells (50,000/ml) were incubated in Ham's F10 medium for 3 h at 37 degrees C either in the presence or absence of 100 ng/ml human chorionic gonadotropin (hCG). Daily blood samples were taken from the monkeys throughout the study for determination of LH, FSH, estradiol (E2) and progesterone levels. Within 5 days following each luteectomy (LX), all monkeys responded with a significant increase in FSH and LH (P less than 0.05). Ovulatory LH/FSH surges occurred 14.4 +/- 0.5 days after the first LX. Hormonal profiles of serum progesterone prior to the first and second LX, CL weight and number of luteal cells/CL were similar (P greater than 0.05). However, luteal cells obtained at the second LX produced more progesterone (P less than 0.05) in vitro under basal and hCG-stimulated conditions than cells from the first LX. The areas under the LH and FSH curves following the first LX were highly correlated (P less than 0.05) with the in vitro progesterone production following the second LX. Thus, the monkeys with the largest areas under the LH and FSH curves subsequently had the highest in vitro progesterone production.  相似文献   

12.
A group of fourteen men (73 ± 5 yr of age), and eighteen women (77 ± 7 yr of age) institutionalized at the Berceni Clinical Hospital, Bucharest, Romania, were studied over a 24-hr span once during each season (winter, spring, summer and fall). All subjects followed a diurnal activity pattern with rest at night and ate three meals per day with breakfast at about 0830, lunch at about 1300 and dinner at about 1830. The meals were similar, although not identical for all subjects during all seasons. On each day of sampling blood was collected at 4-hr intervals over a 24-hr span. Seventeen hormonal variables were determined by radioimmunoassay. Statistically significant circadian rhythms were detected and quantitated by population mean cosinor analysis in pooled data from all four seasons in both sexes for ACTH, aldosterone, Cortisol, C-peptide, dehydroepiandrosterone-sulfate (DHEA-S), immunoreactive insulin, prolactin, 17-OH progesterone, testosterone, total T4 and TSH. In women, estradiol and progesterone also were determined and showed a circadian rhythm during all seasons. Total T, and FSH showed circadian rhythm detection by cosinor analysis in the men only; LH showed no consistent circadian rhythm as group phenomenon in men or women.

A circannual rhythm was detected using the circadian means of each subject at each season as input for the population mean cosinor in the women for ACTH, C-peptide, DHEA-S, FSH, LH, progesterone, 17-OH progesterone and TSH. In the men, a circannual rhythm was detected for ACTH, FSH, insulin, LH, testosterone and T3. There were phase differences between men and women in ACTH, FSH and LH. In those functions in which both the circadian and circannual rhythms were statistically significant, a comparison of the amplitudes showed in the women a higher circannual rather than circadian amplitude for DHEA-S. In 17-OH progesterone, TSH and C-peptide, the circadian amplitude in women was larger. In men, the circannual amplitude of T3 was larger than the circadian amplitude and in insulin the circadian amplitude was larger than the circannual amplitude. There was no statistically significant difference between the circadian and circannual amplitudes in the women in ACTH and progesterone and in the men in ACTH and testosterone.  相似文献   

13.
Objectives were to determine: 1) whether estradiol, given via implants in amounts to stimulate a proestrus increase, induces preovulatory-like luteinizing hormone (LH) and follicle-stimulating hormone (FSH) surges; and 2) whether progesterone, given via infusion in amounts to simulate concentrations found in blood during the luteal phase of the estrous cycle, inhibits gonadotropin surges. All heifers were in the luteal phase of an estrous cycle when ovariectomized. Replacement therapy with estradiol and progesterone was started immediately after ovariectomy to mimic luteal phase concentrations of these steroids. Average estradiol (pg/ml) and progesterone (ng/ml) resulting from this replacement were 2.5 and 6.2 respectively; these values were similar (P greater than 0.05) to those on the day before ovariectomy (2.3 and 7.2, respectively). Nevertheless, basal concentrations of LH and FSH increased from 0.7 and 43 ng/ml before ovariectomy to 2.6 and 96 ng/ml, respectively, 24 h after ovariectomy. This may indicate that other ovarian factors are required to maintain low baselines of LH and FSH. Beginning 24 h after ovariectomy, replacement of steroids were adjusted as follows: 1) progesterone infusion was terminated and 2 additional estradiol implants were given every 12 h for 36 h (n = 5); 2) progesterone infusion was maintained and 2 additional estradiol implants were given every 12 h for 36 h (n = 3); or 3) progesterone infusion was terminated and 2 additional empty implants were given every 12 h for 36 h (n = 6). When estradiol implants were given every 12 h for 36 h, estradiol levels increased in plasma to 5 to 7 pg/ml, which resembles the increase in estradiol that occurs at proestrus. After ending progesterone infusion, levels of progesterone in plasma decreased to less than 1 ng/ml by 8 h. Preovulatory-like LH and FSH surges were induced only when progesterone infusion was stopped and additional estradiol implants were given. These surges were synchronous, occurring 61.8 +/- 0.4 h (mean +/- SE) after ending infusion of progesterone. We conclude that estradiol, at concentrations which simulate those found during proestrus, induces preovulatory-like LH and FSH surges in heifers and that progesterone, at concentrations found during the luteal phase of the estrous cycle, inhibits estradiol-induced gonadotropin surges. Furthermore, ovarian factors other than estradiol and progesterone may be required to maintain basal concentrations of LH and FSH in heifers.  相似文献   

14.
The first objective of this research was to define the capacity of corpora lutea of pig to secrete estradiol in the presence of an androgen substrate which was testosterone. The second objective was to define the synergism between gonadotropic hormones such as LH, FSH, and PRL and testosterone as measured by estradiol and progesterone secretion by two types of porcine luteal cells. Luteal cells were collected from newly forming corpora lutea (0-3 days after ovulation) and from mature corpora lutea (8-10 days after ovulation). After dispersion, luteal cells were suspended in medium M199 supplemented with 10% of calf serum and grown as monolayers at 37 degrees C. Control cultures were grown in medium alone while other cultures were supplemented with either testosterone alone at a concentration of 1 x 10(-7) M or with 10, 100, 500 ng LH plus testosterone, 10, 100, 500 ng FSH plus testosterone or 10, 100, 500 ng PRL plus testosterone. After 2 days of cultivation all cultures were terminated and media were frozen at 20 degrees C for further steroid analysis. Testosterone added to the culture medium in the absence of gonadotropins was without effect on estradiol and progesterone secretion by luteal cells collected in the corpora lutea of the early luteal phase. On the other hand testosterone added to the medium significantly increased progesterone and estradiol secretion by cultured luteal cells collected in the midluteal phase of the cycle. No additive stimulatory action of gonadotropins and testosterone on progesterone secretion was observed in cultures of luteal cells from the early luteal phase but this was not the case in cultures of luteal cells from the midluteal phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Little is known about the regulation of temporal variations of progesterone over the 24-hr span in young cycling women as well as in postmenopausal women. The purpose of the present study was to investigate the relationships between diurnal variations of progesterone and diurnal variations of hormones of the gonadotropic and corticotropic axes, and to provide further information on the source of progesterone secretion under physiological conditions. Twenty-four-hour hormonal profiles were explored under well-controlled laboratory conditions in 10 healthy women (21–36 yr old) with normal ovulatory cycles during early-mid follicular and late luteal phases, and in 8 healthy postmenopausal women (48–74 yr old). In young cycling women, significant positive relationships were found between progesterone and follicle-stimulating hormone (FSH) – but not luteinizing hormone (LH) – profiles during late luteal phase. Conversely, during follicular phase, significant positive relationships were evidenced between progesterone and cortisol profiles, but not between progesterone and FSH or LH. In postmenopausal women, strong positive correlations were found between progesterone and corticotropin (ACTH) or cortisol profiles. The present results indicate that during late luteal phase, temporal progesterone profiles are associated with FSH rather than with LH profiles. They also provide evidence that adrenal cortex is a major – or possibly the only – source of progesterone production during the follicular phase of the normal ovulatory cycle, and probably the only source after menopause.  相似文献   

16.
The concentrations of LH, FSH, prolactin, oestradiol and progesterone in serum were measured daily during the menstrual cycle of 100 normal Chinese women. The cyclic changes in LH, FSH, oestradiol and progesterone were typical of ovulatory cycles in women of other ethnic groups as reported in the literature. The geometric mean of the LH midcycle peak value was 51 X 64 i.u./l, the FSH mid-cycle peak value was 11 X 52 i.u./l, the preovulatory oestradiol peak was 1229 X 12 pmol/l, and the progesterone luteal maximum was 53 X 27 nmol/l. The cyclic changes of prolactin concentrations were irregular: the value at mid-cycle was significantly higher than that at the follicular or luteal phases. A correlation between the length of the cycle and mean concentrations of LH and oestradiol at different stages throughout the cycle was shown.  相似文献   

17.
18.
In order to elucidate the relationship between prolactin (PRL) levels and corpus luteum function in humans, assessment of temporal relationship between levels of PRL, LH, FSH, estradiol and progesterone was made in eleven normal cycling women and six short luteal women. All hormones were determined by specific radioimmunoassay. The mean PRL level in the luteal phase was higher than that in the follicular phase in normal women. On the other hand, no difference mean was seen between the PRL levels of follicular and luteal phases in short luteal women. In addition, follicular and luteal phase secretion of PRL in the short luteal phase (SLP) was lower than that in the normal control. LH and FSH in the follicular and luteal phases, estradiol secretion in the late follicular and early to mid-luteal phases in SLP were also lower than those in the control. These observations were consistent with the hypothesis that SLP is a sequel to aberrant folliculogenesis. In addition, it is inferred that low PRL levels in the SLP might be due to inadequate augmentation by estrogen, rather than giving PRL any positive controlling role in the maintenance of corpus luteum function.  相似文献   

19.
The present experiments were performed to study the effects of preovulatory levels of estrogen on GnRH-induced gonadotropin release. Twelve female volunteers in various phases of the menstrual cycle received estradiol infusion for 66 h at a constant rate of 500 micrograms/24 h which is grossly equivalent to its production rate during the preovulatory follicular phase. In 8 of the women, GnRH was administered concomitantly from 6 h after the initiation of estradiol infusion. The administered doses of GnRH were 2.5 and 5 micrograms/h. Blood samples obtained throughout the infusion were analysed for LH, FSH, estradiol and progesterone. The sole administration of estradiol failed to induce the positive feedback effect on gonadotropin release within the experimental period in the early follicular phase (days 3-7) in 4 women. In 5 women treated during the follicular phase, remarkable LH releases were induced after a lag period by the infusion of both GnRH and estradiol. The induced LH surge formed a prolonged biphasic pattern. Although a similar pattern of FSH was observed in some cases, its response was minimal compared with that of LH. In 3 women during the luteal phase, however, a combined administration of estradiol and GnRH induced only a short term release of LH which was terminated in only 12 h. The present data indicate that 1) Preovulatory levels of estrogen affect the late part of the LH surge which is induced by constant administration of low doses of GnRH resulting in a prolonged biphasic release of LH, and 2) These effects of both hormones are not manifest in the presence of high levels of progesterone. These results indicate the possibility of a role of GnRH and estrogen in the mechanism of the prolonged elevation of a gonadotropin surge at mid-cycle.  相似文献   

20.
The effects of 30 min of exercise (74.1 +/- 3.0% (VO2), on the responses of progesterone (P), estradiol (E2), follicle stimulating hormone (FSH), and luteinizing hormone (LH) were investigated in 10 women. With such exercise significant increments occurred in P (37.6 +/- 9.5%) and E2 (13.5 +/- 7.5%) (P less than 0.05), whereas no changes were observed in FSH and LH (p greater than 0.05). Exercise in the luteal phase and during menses provoked similar changes in P, but E2 concentrations remained unchanged when exercise occurred during menses (p greater than 0.05). With 8-11 weeks of training the menstrual cycles were quite irregular and retesting of subjects in the same phase of the cycle was not possible. Yet, when subjects were retested after training, no changes occurred in P, E2 or LH (p greater than 0.05) but a decrement did occur in FSH (p less than 0.10). Thus, heavy exercise in untrained subjects provokes significant increments in ovarian hormones, whereas no such increments are observed in trained subjects exercising at the same absolute workload.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号