首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The RNA interference (RNAi) phenomenon is a recently observed process in which the introduction of a double-stranded RNA (dsRNA) into a cell causes the specific degradation of a mRNA containing the same sequence. The 21–23 nt guide RNAs, generated by RNase III cleavage from longer dsRNAs, are associated with sequence-specific mRNA degradation. Here, we show that dsRNA specifically suppresses the expression of HIV-1 genes. To study dsRNA-mediated gene interference in HIV-1-infected cells, we have designed six long dsRNAs containing the HIV-1 gag and env genes. HIV-1 replication was totally suppressed in a sequence-specific manner by the dsRNAs in HIV-1-infected cells. Especially, E2 dsRNA containing the major CD4-binding domain sequence of gp120, as the target of the HIV-1 env gene, dramatically inhibited the expression of the HIV-1 p24 antigen in PBMCs for a relatively long time. The dsRNA interference method seems to be a promising new strategy for anti-HIV-1 gene therapeutics.  相似文献   

2.
Double-Stranded RNA in Rice   总被引:2,自引:0,他引:2  
Oryza sativa ) and wild rice (O. rufipogon) tissues. It is detected at every developmental stage, and is transmitted very efficiently to progeny via seeds (more than 98%). The dsRNA is maintained at a constant level (approximately 100 copies/cell) in almost all tissues. However, the number of copies increases about 10-fold when host cells are grown in suspension culture. Complete nucleotide sequences of cultivated rice (temperate japonica rice, cv. Nipponbare, J-dsRNA) and wild rice (W-1714, W-dsRNA) dsRNAs have been determined. Both wild and cultivated rice dsRNAs have a single long open reading frame (ORF) containing the conserved motifs of RNA-dependent RNA polymerase and RNA helicase. The coding strands of both contain a site-specific discontinuity (nick) at nt 1,211 (J-dsRNA) or at nt 1,197 (W-dsRNA) from the 5′ end of their coding strand. Rice dsRNA has several unique properties and can be regarded as a novel RNA replicon. This paper discusses the origin and evolution of the rice dsRNA. Received 23 October 1998/ Accepted in revised form 15 December 1998  相似文献   

3.
Yang D  Lu H  Erickson JW 《Current biology : CB》2000,10(19):1191-1200
BACKGROUND: RNA interference (RNAi) is a phenomenon in which introduced double-stranded RNAs (dsRNAs) silence gene expression through specific degradation of their cognate mRNAs. Recent analyses in vitro suggest that dsRNAs may be copied, or converted, into 21-23 nucleotide (nt) guide RNAs that direct the nucleases responsible for RNAi to their homologous mRNA targets. Such small RNAs are also associated with gene silencing in plants. RESULTS: We developed a quantitative single-embryo assay to examine the mechanism of RNAi in vivo. We found that dsRNA rapidly induced mRNA degradation. A fraction of dsRNAs were converted into 21-23 nt RNAs, and their time of appearance and persistence correlated precisely with inhibition of expression. The strength of RNAi increased disproportionately with increasing dsRNA length, but an 80bp dsRNA was capable of effective gene silencing. RNAi was saturated at low dsRNA concentration and inhibited by excess unrelated dsRNA. The antisense strand of the dsRNA determined target specificity, and excess complementary sense or antisense single-stranded RNAs (ssRNAs) competed with the RNAi reaction. CONCLUSIONS: Processed dsRNAs can act directly to mediate RNAi, with the antisense strand determining mRNA target specificity. The involvement of 21-23 nt RNAs is supported by the kinetics of the processing reaction and the observed size dependence. RNAi depends on a limiting factor, possibly the nuclease that generates the 21-23 mer species. The active moiety appears to contain both sense and antisense RNA strands.  相似文献   

4.
In Arabidopsis thaliana, Dicer-like 3 (DCL3) and Dicer-like 4 (DCL4) cleave long, perfect double-stranded RNAs (dsRNAs) into 24 and 21 nucleotides (nt) small interfering RNAs, respectively, which in turn function in RNA-directed DNA methylation and RNA interference, respectively. To reveal how DCL3 and DCL4 individually recognize long perfect dsRNAs as substrates, we biochemically characterized DCL3 and DCL4 and compared their enzymatic properties. DCL3 preferentially cleaves short dsRNAs with 5′ phosphorylated adenosine or uridine and a 1 nt 3′ overhang, whereas DCL4 cleaves long dsRNAs with blunt ends or with a 1 or 2 nt 3′ overhang with similar efficiency. DCL3 produces 24 nt RNA duplexes with 2 nt 3′ overhangs by the 5′ counting rule. Inorganic phosphate, NaCl and KCl enhance DCL3 activity but inhibit DCL4 activity. These results indicate that plants use DCLs with distinct catalytic profiles to ensure each dsRNA substrate generates only a specific length of siRNAs that trigger a unique siRNA-mediated response.  相似文献   

5.
We have discovered and analysed two novel, linear extrachromosomal double-stranded RNAs (dsRNAs) within oocysts of major north Amercian isolates of Cryptosporidium parvum , a parasitic protozoan that infects the gastrointestinal tract of a variety of mammals, including humans. These dsRNAs were found to reside within the cytoplasm of sporozoites, and were not detected in other species of the genus. cDNAs representing both dsRNA genomes were cloned and sequenced, 1786 and 1374 nt, and each encoded one large open reading frame (ORF). The deduced protein sequence of the larger dsRNA (L-dsRNA) had homology with viral RNA-dependent RNA polymerases (RDRP), with more similarity to polymerases from fungi than those from other protozoa. The deduced protein sequence from the smaller dsRNA (S-dsRNA) had limited similarity with mitogen-activated c-June NH2 terminal protein kinases (JNK) from mammalian cells. Attempts to visually identify or purify virus-like particles associated with the dsRNAs were unsuccessful. Sensitivity of the dsRNAs to RNase A also suggests that the dsRNAs may be unencapsidated. A RDRP activity was identified in crude extracts from C . parvum sporozoites and products of RNA polymerase activity derived in vitro were similar to the dsRNAs purified directly from the parasites.  相似文献   

6.
Endogenous, 14 kb double-stranded RNAs (dsRNAs) have been found in two ecospecies of cultivated rice (temperate japonica rice and tropical japonica rice, Oryza sativa L.) and in wild rice (O. rufipogon, an ancestor of O. sativa). A comparison of the nucleotide and deduced amino acid sequences of the core regions of the RNA-dependent RNA polymerase domains found in these three dsRNAs suggested that these dsRNAs probably evolved independently within each host plant from a common ancestor. These dsRNAs were introduced into F1 hybrids by crossing cultivated rice and wild rice. Unusual cytoplasmic inheritance of these dsRNAs was observed in some F1 hybrids; the evolutionarily related dsRNAs were incompatible for each other, and the resident dsRNA of an egg cell from cultivated rice was excluded by the incoming dsRNA of a pollen cell from wild rice. Coexisting dsRNAs in the F1 hybrids segregated away from each other in the F2 plants. However, the total amount of these dsRNAs in the host cells remained constant (ca. 100 copies/cell). The stringent regulation of the dsRNA copy number may be responsible for their unusual inheritance.  相似文献   

7.
8.
Long double-stranded RNAs (dsRNAs) may undergo covalent modification (hyper-editing) by adenosine deaminases that act on RNA (ADARs), whereby up to 50–60% of adenosine residues are converted to inosine. Previously, we have described a ribonuclease activity in various cell extracts that specifically targets dsRNAs hyper-edited by ADARs. Such a ribonuclease may play an important role in viral defense, or may alternatively be involved in down-regulation of other RNA duplexes. Cleavage of hyper-edited dsRNA occurs within sequences containing multiple IU pairs but not in duplexes that contain either isosteric GU pairs or Watson–Crick base pairs. Here, we describe experiments aimed at further characterizing cleavage of hyper-edited dsRNA. Using various inosine-containing dsRNAs we show that cleavage occurs preferentially at a site containing both IU and UI pairs, and that inclusion of even a single GU pair inhibits cleavage. We also show that cleavage occurs on both strands within a single dsRNA molecule and requires a 2′-OH group. Strikingly, we show that ADAR1, ADAR2 or dADAR all preferentially generate the preferred cleavage site when hyper-editing a long dsRNA.  相似文献   

9.
Mitochondria from the green alga Bryopsis sp. very often contained a 4.5 kb double-stranded RNA (dsRNA) at a defined level. Complementary DNA probes derived from the mitochondrial dsRNA hybridized with none of the algal chloroplast dsRNAs of 1.7 to 2.2 kb, but did hybridize with a similar-sized dsRNA among several dsRNAs from the mitochondria of B. maxima. Sequence analysis of the mitochondrial dsRNA from Bryopsis sp. revealed only two large, overlapping, open reading frames (ORFs) on one strand if UGA was taken as a non-termination codon, suggesting the independent phylogenetic evolution of the mitochondrial dsRNA. Consensus sequence for RNA-dependent RNA polymerase was found within the longer ORF (2472 bp) of the dsRNA. The overlapping 52 bp of the ORFs in different reading frames is suggestive of the occurrence of a -1 ribosomal frameshift in the mitochondrial translation system. The observed simple genetic structures suggest that the algal mitochondrial dsRNA might be deficient in a gene for movement from cell to cell in host plants and, hence, has a plasmid-like nature that is distinct from that of infectious plant viruses. The nature and origin of the endogenous dsRNAs of various sizes and their relationships are discussed.  相似文献   

10.
Total dsRNA extractions in five killer K2 strains of Saccharomyces cerevisiae isolated from spontaneous fermentations revealed the presence of a novel dsRNA fragment (which we named NS dsRNA) of approximately 1.30 kb, together with L and M2 dsRNAs. NS dsRNA appeared to be encapsidated in the same kind of viral particles as L and M2 dsRNA. Northern blot hybridization experiments indicated that NS dsRNA was derived from M2 dsRNA, likely by deletion of the internal A+U-rich region. However, unlike S dsRNAs (suppressive forms derived from M1 dsRNA in K1 killers), NS dsRNA did not induce exclusion of the parental M2 dsRNA when the host strain was maintained for up to 180 generations of growth.  相似文献   

11.
12.
RNA interference (RNAi) is an important tool for studying gene function and genetic networks. Double-stranded RNA (dsRNA) triggers RNAi that selectively silences gene expression mainly by degrading target mRNA sequences. Short interfering RNA, short hairpin RNA (shRNA), long dsRNA, and microRNA-based shRNA (shRNAmir) are four different types of dsRNA that have been widely used to silence gene expression in cultured cells, tissues, organs, and organisms. Long dsRNAs are usually 200–500 nucleotides in length and can selectively suppress expression of target genes in Caenorhabditis elegans and Drosophila but not in mammals due to unwanted non-specific knockdown. Thus, multiple attempts have been made to synthesize, express, and deliver short dsRNAs that specifically silence target genes in mammals. We describe a method for constructing an RNAi library by converting cDNAs into shRNAmir30 sequences by sequential treatment with different enzymes and affinity purification of biotin- or digoxygenin-labeled DNA fragments. We also developed a system to generate stable cell lines that uniformly express shRNAmir30s and fluorescence reporters by Cre recombinase-dependent site-specific recombination. Thus, combined with the RNAi library, this system facilitates screening for potent RNAi sequences that strongly suppress expression of target genes.  相似文献   

13.
Human Dicer contains two RNase III domains (RNase IIIa and RNase IIIb) that are responsible for the production of short interfering RNAs and microRNAs. These small RNAs induce gene silencing known as RNA interference. Here, we report the crystal structure of the C-terminal RNase III domain (RNase IIIb) of human Dicer at 2.0 Å resolution. The structure revealed that the RNase IIIb domain can form a tightly associated homodimer, which is similar to the dimers of the bacterial RNase III domains and the two RNase III domains of Giardia Dicer. Biochemical analysis showed that the RNase IIIb homodimer can cleave double-stranded RNAs (dsRNAs), and generate short dsRNAs with 2 nt 3′ overhang, which is characteristic of RNase III products. The RNase IIIb domain contained two magnesium ions per monomer around the active site. The distance between two Mg-1 ions is approximately 20.6 Å, almost identical with those observed in bacterial RNase III enzymes and Giardia Dicer, while the locations of two Mg-2 ions were not conserved at all. We presume that Mg-1 ions act as catalysts for dsRNA cleavage, while Mg-2 ions are involved in RNA binding.  相似文献   

14.
Class 1 ribonuclease III (RNase III), found in bacteria and yeast, is involved in processing functional RNA molecules such as ribosomal RNAs (rRNAs). However, in Arabidopsis thaliana, the lack of an obvious phenotype or quantitative change in mature rRNAs in class 1 RNase III (AtRTL2) mutants and overexpressing plants suggests that AtRTL2 is not involved in rRNA maturation. We characterized the in vitro activity of AtRTL2 to consider its in vivo function. AtRTL2 cleaved double-stranded RNA (dsRNA) specifically in vitro, yielding products of approximately 25 nt or longer in length, in contrast to 10–20 nt long products in bacteria and yeasts. Although dsRNA-binding activity was not detected, the dsRNA-binding domains in AtRTL2 were essential for its dsRNA-cleaving activity. Accumulation of small RNAs derived from transgene dsRNAs was increased when AtRTL2 was transiently expressed in Nicotiana benthamiana leaves by agroinfiltration. These results raise the possibility that AtRTL2 has functions distinct from those of other class 1 RNase IIIs in vivo.  相似文献   

15.
16.
17.
18.
Ingested dsRNAs trigger RNA interference (RNAi) in many invertebrates, including the nematode Caenorhabditis elegans. Here we show that the C.?elegans apical intestinal membrane protein SID-2 is required in C.?elegans for the import of ingested dsRNA and that, when expressed in Drosophila S2 cells, SID-2 enables the uptake of dsRNAs. SID-2-dependent dsRNA transport requires an acidic extracellular environment and is selective for dsRNAs with at least 50 base pairs. Through structure-function analysis, we identify several SID-2 regions required for this activity, including three extracellular, positively charged histidines. Finally, we find that SID-2-dependent transport is inhibited by drugs that interfere with vesicle transport. Therefore, we propose that environmental dsRNAs are imported from the acidic intestinal lumen by SID-2 via endocytosis and are released from internalized vesicles in a secondary step mediated by the dsRNA channel SID-1. Similar multistep mechanisms may underlie the widespread observations of environmental RNAi.  相似文献   

19.
Small non-coding RNAs of 18–25 nt in length can regulate gene expression through the RNA interference (RNAi) pathway. To characterize small RNAs in HIV-1-infected cells, we performed linker-ligated cloning followed by high-throughput pyrosequencing. Here, we report the composition of small RNAs in HIV-1 productively infected MT4 T-cells. We identified several HIV-1 small RNA clones and a highly abundant small 18-nt RNA that is antisense to the HIV-1 primer-binding site (PBS). This 18-nt RNA apparently originated from the dsRNA hybrid formed by the HIV-1 PBS and the 3′ end of the human cellular tRNAlys3. It was found to associate with the Ago2 protein, suggesting its possible function in the cellular RNAi machinery for targeting HIV-1.  相似文献   

20.
Dicer is a multi-domain RNase III-related endonuclease responsible for processing double-stranded RNA (dsRNA) to small interfering RNAs (siRNAs) during a process of RNA interference (RNAi). It also catalyses excision of the regulatory microRNAs from their precursors. In this work, we describe the purification and properties of a recombinant human Dicer. The protein cleaves dsRNAs into approximately 22 nucleotide siRNAs. Accumulation of processing intermediates of discrete sizes, and experiments performed with substrates containing modified ends, indicate that Dicer preferentially cleaves dsRNAs at their termini. Binding of the enzyme to the substrate can be uncoupled from the cleavage step by omitting Mg(2+) or performing the reaction at 4 degrees C. Activity of the recombinant Dicer, and of the endogenous protein present in mammalian cell extracts, is stimulated by limited proteolysis, and the proteolysed enzyme becomes active at 4 degrees C. Cleavage of dsRNA by purifed Dicer and the endogenous enzyme is ATP independent. Additional experiments suggest that if ATP participates in the Dicer reaction in mammalian cells, it might be involved in product release needed for the multiple turnover of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号