首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Mutations of the p62/Sequestosome 1 gene (p62/SQSTM1) account for both sporadic and familial forms of Paget's disease of bone (PDB). We originally described a methionine-->valine substitution at codon 404 (M404V) of exon 8, in the ubiquitin protein-binding domain of p62/SQSTM1 gene in an Italian PDB patient. The collection of data from the patient's pedigree provided evidence for a familial form of PDB. Extension of the genetic analysis to other relatives in this family demonstrated segregation of the M404V mutation with the polyostotic PDB phenotype and provided the identification of six asymptomatic gene carriers. DNA for mutational analysis of the exon 8 coding sequence was obtained from 22 subjects, 4 PDB patients and 18 clinically unaffected members. Of the five clinically ascertained affected members of the family, four possessed the M404V mutation and exhibited the polyostotic form of PDB, except one patient with a single X-ray-assessed skeletal localization and one with a polyostotic disease who had died several years before the DNA analysis. By both reconstitution and mutational analysis of the pedigree, six unaffected subjects were shown to bear the M404V mutation, representing potential asymptomatic gene carriers whose circulating levels of alkaline phosphatase were recently assessed as still within the normal range. Taken together, these results support a genotype-phenotype correlation between the M404V mutation in the p62/SQSTM1 gene and a polyostotic form of PDB in this family. The high penetrance of the PDB trait in this family together with the study of the asymptomatic gene carriers will allow us to confirm the proposed genotype-phenotype correlation and to evaluate the potential use of mutational analysis of the p62/SQSTM1 gene in the early detection of relatives at risk for PDB.  相似文献   

2.
Paget’s disease of bone (PDB) is a late-onset disorder characterised by focal areas of increased bone resorption, with osteoclasts that are increased in size, multinuclearity, number and activity. PDB-causing missense and nonsense variants in the gene encoding Sequestosome-1/p62 (SQSTM1) have been identified, all of which cluster in and around the ubiquitin-associated (UBA) domain of the protein. SQSTM1 is ubiquitously expressed and there is, as yet, no clear reason why these mutations only appear to cause an osteoclast-related phenotype.Using co-immunoprecipitation and tandem mass spectrometry, we identified a novel interaction in human osteoclast-like cells between SQSTM1 and Autophagy-Linked FYVE domain-containing protein (ALFY/WDFY3). Endogenous ALFY and SQSTM1 both localised within the nuclei of osteoclasts and their mononuclear precursors. When osteoclasts were starved to induce autophagy, SQSTM1 and ALFY relocated to the cytoplasm where they formed large aggregates, with cytoplasmic relocalisation appearing more rapid in mature osteoclasts than in precursors in the same culture. Overexpression of wild-type SQSTM1 in HEK293 cells also resulted in the formation of cytoplasmic aggregates containing SQSTM1 and endogenous ALFY, as did overexpression of a PDB-causing missense mutant form of SQSTM1, indicating that this mutation does not impair the formation of SQSTM1- and ALFY-containing aggregates.Expression of ALFY in bone cells has not previously been reported, and the process of autophagy has not been studied with respect to osteoclast activity. We have identified a functional interaction between SQSTM1 and ALFY in osteoclasts under conditions of cell stress. The difference in response to starvation between mature osteoclasts and their precursors may begin to explain the cell-specific functional effects of SQSTM1 mutations in PDB.  相似文献   

3.
4.
5.
Garner TP  Long J  Layfield R  Searle MS 《Biochemistry》2011,50(21):4665-4674
The scaffold protein p62/SQSTM1 acts as a hub in regulating a diverse range of signaling pathways which are dependent upon a functional ubiquitin-binding C-terminal UBA domain. Mutations linked to Paget's disease of bone (PDB) commonly cluster within the UBA domain. The p62 UBA domain is unique in forming a highly stable dimer which regulates ubiquitin recognition by using overlapping surface patches in both dimerization and ubiquitin binding, making the two association events competitive. NMR structural analysis and biophysical methods show that some PDB mutations modulated the ubiquitin binding affinity by both direct and indirect mechanisms that affect UBA structural integrity, dimer stability, and contacts at the UBA-ubiquitin interface. In other cases, common PDB mutations (P392L in particular) result in no significant change in ubiquitin binding affinity for the UBA domain in isolation; however, all PDB UBA mutations lead to loss of function with respect to ubiquitin binding in the context of full-length p62, suggesting a more complex underlying mechanism.  相似文献   

6.
Paget disease of bone is characterized by focal increases of the bone-remodeling process. It is the second most common metabolic bone disease after osteoporosis. Genetic factors play a major role in the etiology of Paget disease of bone, and two loci have been mapped for the disorder: PDB1 and PDB2. The gene(s) causing the typical form of the disorder remains to be characterized. To decipher the molecular basis of Paget disease of bone, we performed genetic linkage analysis in 24 large French Canadian families (479 individuals) in which the disorder was segregating as an autosomal dominant trait. After exclusion of PDB2, a genomewide scan was performed on the three most informative family nuclei. LOD scores >1.0 were observed at seven locations. The 24 families were then used to detect strong evidence for linkage to chromosome 5q35-qter. Under heterogeneity, a maximum LOD score of 8.58 was obtained at D5S2073, at straight theta= .1. The same characteristic haplotype was carried by all patients in eight families, suggesting a founder effect. A recombination event in a key family confined the disease region within a 6-cM interval between D5S469 and the telomere. The 16 other families, with very low conditional probability of linkage to 5q35-qter, were further used, to map a second locus at 5q31. Under heterogeneity, a maximum LOD score of 3.70 was detected at D5S500 with straight theta=.00. Recombination events refined the 5q31 region within 12.2 cM, between D5S642 and D5S1972. These observations demonstrate the mapping of two novel loci for Paget disease of bone and provide further evidence for genetic heterogeneity of this highly prevalent disorder. It is proposed that the 5q35-qter and 5q31 loci be named "PDB3" and "PDB4," respectively.  相似文献   

7.
SQSTM1 mutations are common in patients with Paget disease of bone (PDB), with most affecting the C-terminal ubiquitin-associated (UBA) domain of the SQSTM1 protein. We performed structural and functional analyses of two UBA domain mutations, an I424S mutation relatively common in UK PDB patients, and an A427D mutation associated with a severe phenotype in Southern Italian patients. Both impaired SQSTM1's ubiquitin-binding function in pull-down assays and resulted in activation of basal NF-κB signalling, compared to wild-type, in reporter assays. We found evidence for a relationship between the ability of different UBA domain mutants to activate NF-κB signalling in vitro and number of affected sites in vivo in 1152 PDB patients from the UK and Italy, with A427D-SQSTM1 producing the greatest level of activation (relative to wild-type) of all PDB mutants tested to date. NMR and isothermal titration calorimetry studies were able to demonstrate that I424S is associated with global structural changes in the UBA domain, resulting in 10-fold weaker UBA dimer stability than wild-type and reduced ubiquitin-binding affinity of the UBA monomer. Our observations provide insights into the role of SQSTM1-mediated NF-κB signalling in PDB aetiology, and demonstrate that different mutations in close proximity within loop 2/helix 3 of the SQSTM1 UBA domain exert distinct effects on protein structure and stability, including indirect effects at the UBA/ubiquitin-binding interface.  相似文献   

8.
《Autophagy》2013,9(7):981-983
Skeletal remodelling is an ongoing process requiring the coordinated action of different cell types to maintain homeostatic control of bone synthesis and degradation. Mutations in p62/SQSTM1 are associated with sporadic and 5q35-linked Paget’s Disease of Bone (PDB), characterized by focal increased bone turnover. These mutations cluster in the ubiquitin associated (UBA) domain and are thought to lead to enhancement of NFκB pathway activation involved in osteoclastogenesis and hyper-responsiveness to receptor activator of nuclear factor-κB ligand (RANKL). The structurally similar selective autophagic receptor, Nbr1, binds to LC3 and p62, and is sequestered into autophagosomes, whereas it accumulates in autophagic-deficient tissues. We have shown that truncation of Nbr1 in a murine model, where it can still interact with p62 but not LC3, leads to increased osteoblast differentiation and activity in vivo. This results in an age-dependent increase in bone mass and bone mineral density. This is a molecular consequence of loss of autophagy receptor function via deletion of its C-terminal UBA domain, and/or modulation of the p38 MAPK cellular signalling pathway.  相似文献   

9.
10.
Inflammation is crucial in the defense against infections but must be tightly controlled to limit detrimental hyperactivation. Our diet influences inflammatory processes and omega-3 polyunsaturated fatty acids (n-3 PUFAs) have known anti-inflammatory effects. The balance of pro- and anti-inflammatory processes is coordinated by macrophages and macroautophagy/autophagy has recently emerged as a cellular process that dampens inflammation. Here we report that the n-3 PUFA docosahexaenoic acid (DHA) transiently induces cytosolic speckles of the autophagic receptor SQSTM1/p62 (sequestosome 1) (described as SQSTM1/p62-bodies) in macrophages. We suggest that the formation of SQSTM1/p62-bodies represents a fast mechanism of NFE2L2/Nrf2 (nuclear factor, erythroid 2 like 2) activation by recruitment of KEAP1 (kelch like ECH associated protein 1). Further, the autophagy receptor TAX1BP1 (Tax1 binding protein 1) and ubiquitin-editing enzyme TNFAIP3/A20 (TNF α induced protein 3) could be identified in DHA-induced SQSTM1/p62-bodies. Simultaneously, DHA strongly dampened the induction of pro-inflammatory genes including CXCL10 (C-X-C motif chemokine ligand 10) and we suggest that formation of SQSTM1/p62-bodies and activation of NFE2L2 leads to tolerance towards selective inflammatory stimuli. Finally, reduced CXCL10 levels were related to the improved clinical outcome in n-3 PUFA-supplemented heart-transplant patients and we propose CXCL10 as a robust marker for the clinical benefits mobilized by n-3 PUFA supplementation.  相似文献   

11.
Paget disease of bone (PDB) is a skeletal disorder common in Western Europe but extremely rare in the Indian subcontinent and Far East. The condition has a strong genetic element with mutations affecting the SQSTM1 gene, encoding the p62 protein, frequently identified. Recently SQSTM1 mutations have also been reported in a small number of patients with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), neurodegenerative disorders in which significant coexistence with PDB has not been previously recognized. Although several SQSTM1 mutations are common to both ALS/FTLD and PDB, many are ALS/FTLD-specific. The p62 protein regulates various cellular processes including NF-κB signaling and autophagy pathways. Here we consider how knowledge of the impact of PDB-associated SQSTM1 mutations (several of which are now known to be relevant for ALS/FTLD) on these pathways, as well as the locations of the mutations within the p62 primary sequence, may provide new insights into ALS/FTLD disease mechanisms.  相似文献   

12.
Transforming growth factor beta (TGFβ) receptor trafficking regulates many TGFβ-dependent cellular outcomes including epithelial to mesenchymal transition (EMT). EMT in A549 non-small cell lung cancer (NSCLC) cells has recently been linked to the regulation of cellular autophagy. Here, we investigated the role of the autophagy cargo receptor, p62/sequestosome 1 (SQSTM1), in regulating TGFβ receptor trafficking, TGFβ1-dependent Smad2 phosphorylation and EMT in A549 NSCLC cells. Using immunofluorescence microscopy, p62/SQSTM1 was observed to co-localize with TGFβ receptors in the late endosome. Small interfering RNA (SiRNA)-mediated silencing of p62/SQSTM1 resulted in an attenuated time-course of Smad2 phosphorylation but did not alter Smad2 nuclear translocation. However, p62/SQSTM1 silencing promoted TGFβ1-dependent EMT marker expression, actin stress fiber formation and A549 cell migration. We further observed that Smad4-independent TGFβ1 signaling decreased p62/SQSTM1 protein levels via a proteasome-dependent mechanism. Although p62/SQSTM1 silencing did not impede TGFβ-dependent autophagy, our results suggest that p62/SQSTM1 may aid in maintaining A549 cells in an epithelial state and TGFβ1 decreases p62/SQSTM1 prior to inducing EMT and autophagy.  相似文献   

13.
We show that the ubiquitin-associated domain (UBA) of human p62/sequestosome-1 (SQSTM1) can delay degradation of proteasome substrates in yeast. Taking advantage of naturally occurring mutant UBA domains that are linked to Paget’s disease of bone (PDB), we found that three of the four mutant UBA domains tested in this study were able to inhibit proteasomal degradation, albeit not to the same extent as the wild-type domain. Interestingly, the stability measured as the fraction of folded protein, and not the ubiquitin binding properties, of the PDB-associated UBA domains correlated with their protective effects. These data suggest that the protective effect of UBA domains depends on their structural integrity rather than ubiquitin binding capabilities.  相似文献   

14.
Proteotoxicity resulting from accumulation of damaged/unwanted proteins contributes prominently to cellular aging and neurodegeneration. Proteasomal removal of these proteins upon covalent polyubiquitination is highly regulated. Recent reports proposed a role for autophagy in clearance of diffuse ubiquitinated proteins delivered by p62/SQSTM1. Here, we compared the turnover dynamics of endogenous ubiquitinated proteins by proteasomes and autophagy by assessing the effect of their inhibitors. Autophagy inhibitors bafilomycin A1, ammonium chloride, and 3-methyladenine failed to increase ubiquitinated protein levels. The proteasome inhibitor epoxomicin raised ubiquitinated protein levels at least 3-fold higher than the lysosomotropic agent chloroquine. These trends were observed in SK-N-SH cells under serum or serum-free conditions and in WT or Atg5(-/-) mouse embryonic fibroblasts (MEFs). Notably, chloroquine considerably inhibited proteasomes in SK-N-SH cells and MEFs. In these cells, elevation of p62/SQSTM1 was greater upon proteasome inhibition than with all autophagy inhibitors tested and was reduced in Atg5(-/-) MEFs. With epoxomicin, soluble p62/SQSTM1 associated with proteasomes and p62/SQSTM1 aggregates contained inactive proteasomes, ubiquitinated proteins, and autophagosomes. Prolonged autophagy inhibition (96 h) failed to elevate ubiquitinated proteins in rat cortical neurons, although epoxomicin did. Moreover, prolonged autophagy inhibition in cortical neurons markedly increased p62/SQSTM1, supporting its degradation mainly by autophagy and not by proteasomes. In conclusion, we clearly demonstrate that pharmacologic or genetic inhibition of autophagy fails to elevate ubiquitinated proteins unless the proteasome is affected. We also provide strong evidence that p62/SQSTM1 associates with proteasomes and that autophagy degrades p62/SQSTM1. Overall, the function of p62/SQSTM1 in the proteasomal pathway and autophagy requires further elucidation.  相似文献   

15.
16.
17.
18.
ER degradation-enhancing α-mannosidase-like 1 protein (EDEM1) is involved in the routing of misfolded glycoproteins for degradation in the cytoplasm. Previously, we reported that EDEM1 leaves the endoplasmic reticulum via non-COPII vesicles (Zuber et al. in Proc Natl Acad Sci USA 104:4407–4412, 2007) and becomes degraded by basal autophagy (Le Fourn et al. in Cell Mol Life Sci 66:1434–1445, 2009). However, it is unknown which type of autophagy is involved. Likewise, how EDEM1 is targeted to autophagosomes remains elusive. We now show that EDEM1 is degraded by selective autophagy. It colocalizes with the selective autophagy cargo receptors p62/SQSTM1, neighbor of BRCA1 gene 1 (NBR1) and autophagy-linked FYVE (Alfy) protein, and becomes engulfed by autophagic isolation membranes. The interaction with p62/SQSTM1 and NBR1 is required for routing of EDEM1 to autophagosomes since it can be blocked by short inhibitory RNA knockdown of the cargo receptors. Furthermore, p62/SQSTM1 interacts only with deglycosylated EDEM1 that is also ubiquitinated. The deglycosylation of EDEM1 occurs by the cytosolic peptide N-glycanase and is a prerequisite for interaction and aggregate formation with p62/SQSTM1 as demonstrated by the effect of peptide N-glycanase inhibitors on the formation of protein aggregates. Conversely, aggregation of p62/SQSTM1 and EDEM1 occurs independent of cytoplasmic histone deacetylase. These data provide novel insight into the mechanism of autophagic degradation of the ER-associated protein degradation (ERAD) component EDEM1 and disclose hitherto unknown parallels with the clearance of cytoplasmic aggregates of misfolded proteins by selective autophagy.  相似文献   

19.
20.
Mutations in the valosin containing protein (VCP) gene cause hereditary Inclusion body myopathy (hIBM) associated with Paget disease of bone (PDB), frontotemporal dementia (FTD), more recently termed multisystem proteinopathy (MSP). Affected individuals exhibit scapular winging and die from progressive muscle weakness, and cardiac and respiratory failure, typically in their 40s to 50s. Histologically, patients show the presence of rimmed vacuoles and TAR DNA-binding protein 43 (TDP-43)-positive large ubiquitinated inclusion bodies in the muscles. We have generated a VCPR155H/+ mouse model which recapitulates the disease phenotype and impaired autophagy typically observed in patients with VCP disease. Autophagy-modifying agents, such as rapamycin and chloroquine, at pharmacological doses have previously shown to alter the autophagic flux. Herein, we report results of administration of rapamycin, a specific inhibitor of the mechanistic target of rapamycin (mTOR) signaling pathway, and chloroquine, a lysosomal inhibitor which reverses autophagy by accumulating in lysosomes, responsible for blocking autophagy in 20-month old VCPR155H/+ mice. Rapamycin-treated mice demonstrated significant improvement in muscle performance, quadriceps histological analysis, and rescue of ubiquitin, and TDP-43 pathology and defective autophagy as indicated by decreased protein expression levels of LC3-I/II, p62/SQSTM1, optineurin and inhibiting the mTORC1 substrates. Conversely, chloroquine-treated VCPR155H/+ mice revealed progressive muscle weakness, cytoplasmic accumulation of TDP-43, ubiquitin-positive inclusion bodies and increased LC3-I/II, p62/SQSTM1, and optineurin expression levels. Our in vitro patient myoblasts studies treated with rapamycin demonstrated an overall improvement in the autophagy markers. Targeting the mTOR pathway ameliorates an increasing list of disorders, and these findings suggest that VCP disease and related neurodegenerative multisystem proteinopathies can now be included as disorders that can potentially be ameliorated by rapalogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号