首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Biotransformations of aromatic aldehydes by acetogenic bacteria   总被引:2,自引:0,他引:2  
Vanillin was subject to O demethylation and supported growth of Clostridium formicoaceticum and Clostridium thermoaceticum. Vanillin was also stimulatory to the CO-dependent growth of Peptostreptococcus productus. The aldehyde substituent of vanillin was metabolized by routes which were dependent upon both the acetogen and a co-metabolizable substrate (e.g. carbon monoxide [CO]). C. formicoaceticum and C. thermoaceticum oxidized the aldehyde group of vanillin to the carboxyl level, while P. productus reduced the aldehyde group of vanillin to the alcohol level. In contrast, during CO-dependent growth, C. thermoaceticum reduced 4-hydroxybenzaldehyde to 4-hydroxybenzyl alcohol while P. productus both reduced and oxidized 4-hydroxybenzaldehyde to 4-hydroxybenzyl alcohol and 4-hydroxybenzoate, respectively. These metabolic potentials indicate aromatic aldehydes may affect the flow of reductant during acetogenesis.  相似文献   

2.
Vanillin cultures of Clostridium formicoaceticum produced higher cell densities than did vanillate cultures. During growth at the expense of vanillin, vanillate was the predominat intermediate formed; 3,4-dihydroxybenzaldehyde was not a significantly detectable intermediate. Acetate and protocatechuate were both produced in equimolar ratio relative to vanillin consumption. 4-Hydroxybenzaldehyde was a growth-supportive aromatic compound for both C. formicoaceticum and Clostridium aceticum (doubling times approximated 5 h), was oxidized stoichiometrically to 4-hydroxybenzoate, and was not appreciably toxic at concentrations up to 15 mM. Acetate was (i) the major reduced end product detected concomitant to growth and to benzaldehyde oxidation and (ii) formed in close approximation to the following stoichiometry: 4 4-hydroxybenzaldehyde + 2CO2+2H2O4 4-hydroxybenzoate + CH3COOH. We conclude that these two acetogens are capable of benzaldehyde-coupled acetogenesis and growth.  相似文献   

3.
During batch growth of Alcaligenes eutrophus on various aromatic compounds in the presence of acetate, several distinct behaviour patterns were observed. The utilization of substrates of the meta pathway (phenol or p-cresol) was inhibited by acetate. When the aromatic was a substrate of the p-hydroxybenzoate branch of the ortho pathway, growth was mixotrophic, i.e. both substrates were consumed simultaneously. For the substrates of the gentisate pathway or the benzoate branch of the ortho pathway, substrate preference was governed by growth performance. Aromatic compounds enabling growth rate and yields higher than those obtained on acetate alone (i.e. benzoate, benzaldehyde, m-hydroxybenzoate and gentisate) inhibited acetate utilization, while acetate was the substrate consumed preferentially in mixtures containing aromatic compounds supporting only slow growth (i.e. benzoyl formate and 4-fluorobenzoate). Received: 18 April 1996 / Received revision: 9 July 1996 / Accepted: 15 July 1996  相似文献   

4.
M. PAREKH, H.L. DRAKE AND S.L. DANIEL 1996. Desulfovibrio desulfuricans ATCC 27774 was screened for reactivity against aromatic compounds during lactate-dependent, nitrate-dissimilating growth. Only aromatic aldehydes (benzaldehyde, 2-hydroxybenzaldehyde, 3-hydroxybenzaldehyde, 4-hydroxybenzaldehyde, vanillin, iso -vanillin and o -vanillin) were reactive and, with the exception of 2-hydroxybenzaldehyde, were stimulatory to lactate-dependent growth. Aromatic aldehydes were transformed to their corresponding benzoate and benzyl alcohol derivatives, with the ratio of benzoate-to-benzyl alcohol derivatives being dependent upon lactate availability. In presence of lactate, aromatic aldehydes were primarily reduced to their corresponding benzyl alcohol derivatives; in the absence of lactate, aromatic aldehydes were mainly oxidized to their corresponding benzoate derivatives. In the absence of nitrate, 3-hydroxybenzaldehyde was neither reduced nor oxidized. These results indicate that D. desulfuricans is competent in the bidirectional transformation of aromatic aldehydes under nitrate-dissimilating conditions and that the direction of transformation (i.e. reduction or oxidation) is regulated by reductant availability.  相似文献   

5.
An anaerobic, non-motile, rod shaped bacterium is described which cleaves the phenylether bonds of methoxylated aromatic substrates to give the corresponding hydroxy aromatic derivatives and mixed volatile fatty acids, chain length, C1, C2 and C4. The bacterium was isolated from an anaerobic digestor fed with contents from a wood fiber to alcohol fermentation plant, using anaerobic rolltube medium with ferulate as the carbon and energy source. Moles fatty acid produced per 100 mole of methoxyl group of aromatic substrate fermented were approximately: acetate, 14; butyrate, 18; and formate, 15. For the fermentation of equimolar amounts of methoxylated aromatic compounds, growth yields were proportional to the number of methoxylated groups per molecule, and the amount of cells per methoxyl group did not alter when phenylacrylate derivatives were used as substrates. The organism was unable to reduce the side-chain double bond of phenylacrylate derivatives. Coculture of the bacterium on ferulate with Methanospirillum hungatei, or Desulfovibrio in the presence of SO 4 = resulted in no nett production of formate, and small quantities of methane and sulfide were produced respectively. The isolate utilized glucose, fructose, and lactate, but not methanol or H2–CO2 as growth substrates. Lactate, butyrate, acetate, formate and small quantities of H2 were produced from glucose fermentation. No reduction of SO 4 = or NO 3 - occurred during fermentation of glucose or methoxylated aromatics and no growth occurred in the presence of oxygen.  相似文献   

6.
It is unknown to which extent phototrophic Fe(II) oxidation takes place in the simultaneous presence of organic electron donors (e.g., acetate/lactate). Therefore, the photoferrotrophic strain Rhodopseudomonas palustris TIE-1 was inoculated with various combinations of Fe(II), acetate and lactate to understand metabolic substrate preference. When acetate was provided together with Fe(II), TIE-1 consumed acetate first before Fe(II). When provided lactate plus Fe(II), TIE-1 consumed both substrates in parallel. When all three substrates were provided in one culture, TIE-1 used all substrates simultaneously. Our study suggests that the availability of alternative electron donors in addition to ferrous iron limits phototrophic iron oxidation.  相似文献   

7.
During growth of Acetobacterium woodii on fructose, glucose or lactate in a medium containing less than 0.04% bicarbonate, molecular hydrogen was evolved up to 0.1 mol per mol of substrate. Under an H2-atmosphere growth of A. woodii with organic substrates was completely inhibited whereas under an H2/CO2-atmosphere rapid growth occurred. Under these conditions H2+CO2 and the organic substrate were utilized simultaneously indicating that A. woodii was able to grow mixotrophically. Clostridium aceticum differed from A. woodii in that H2 was only evolved in the stationary phase, that the inhibition by H2 was observed at pH 8.5 but not at pH 7.5, anf that in the presence of fructose and H2+CO2 only fructose was utilized.The hydrogenase activity of fructose-grown cells of C. aceticum amounted to only 12% of that of H2+CO2-grown cells. With A. woodii a corresponding decrease of the activity of this enzyme was not observed.  相似文献   

8.
When Clostridium formicoaceticum was grown on fumarate or l-malate crude cell extracts contained a high fumarate reductase activity. Using reduced methyl viologen as electron donor the specific activity amounted to 2–3.5 U per mg of protein. Reduced benzyl viologen, FMNH2 and NADH could also serve as electron donors but the specific activities were much lower. The NADH-dependent activity was strictly membrane-bound and rather labile. Its specific activity did not exceed 0.08 U per mg of particle protein. Fumarate reductase activity was also found in cells of C. formicoaceticum grown on fructose, gluconate, glutamate and some other substrates.The methyl viologen-dependent fumarate reductase activity could almost completely be measured with intact cells whereas only about 25% of the cytoplasmic acetate kinase activity was detected with cell suspensions. The preparation of spheroplasts from cells of C. formicoaceticum in 20 mM HEPES-KOH buffer containing 0.6 M sucrose and 1 mM dithioerythritol resulted in the specific release of 88% of the fumarate reductase activity into the spheroplast medium. Only small amounts of the cytoplasmic proteins malic enzyme and acetate kinase were released during this procedure. These results indicate a peripheral location of the fumarate reductase of C. formicoaceticum on the membrane.Abbreviations HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid - O.D optical density - DTE dithioerythritol  相似文献   

9.
Voltage-dependent potassium channels (Kv) are involved in various cellular signalling processes by governing the membrane potential of excitable cells. The cytosolic face of these α subunit-containing channels is associated with β subunits that can modulate channel responses. Surprisingly, the β subunit of the mammalian Kv1 channels, Kvβ2, has a high level of sequence homology with the aldo–keto reductase (AKR) superfamily of proteins. Recent studies have shown that Kvβ2 can catalyze the reduction of aldehydes and, most significantly, that channel function is modulated when Kvβ2-bound NADPH is concomitantly oxidized. As a result, the redox chemistry of this subunit is crucial to understanding its role in K+ channel modulation. The present study has extended knowledge of the substrate profile of this subunit using a single turnover fluorimetric assay. Kvβ2 was found to catalyse the reduction of aromatic aldehyde substrates such as 2, 3 and 4-nitrobenzaldehydes, 4-hydroxybenzaldehyde, pyridine 2-aldehyde and benzaldehyde. The presence of an electron withdrawing group at the position para to the aldehyde in aromatic compounds facilitated reduction. Aliphatic aldehydes proved to be poor substrates. We devised a simple HPLC-based assay to identify Kvβ2 reaction products. Using this assay we showed, for the first time, that Kvβ2 can catalyze a slow aldehyde dismutation reaction using 4-nitrobenzaldehyde as substrate and have identified the products of this reaction. The ability of Kvβ2 to carry out both an aldehyde reduction and a dismutation reaction is discussed in the light of current thinking on the role of redox chemistry in channel modulation.  相似文献   

10.
Metabolically stable enrichment cultures of anaerobic bacteria obtained by elective enrichment of sediment samples from the Baltic Sea and Gulf of Bothnia have been used to study the oxidation and reduction of the aldehyde group of various halogenated aromatic aldehydes. During the transformation of 5- and 6-chlorovanillin, 6-bromovanillin, 3-chloro-4-hydroxybenzaldehyde, 3,5-dichloro-4-hydroxybenzaldehyde, and 3,5-dibromo-4-hydroxybenzaldehyde, it was shown that synthesis of the corresponding carboxylic acids, which were the principal metabolites, was invariably accompanied by partial reduction of the aldehyde to a hydroxymethyl group in yields of between 3 and 30%. Complete reduction to a methyl group was observed with some of the halogenated vanillins, but to an extremely limited extent with the halogenated 4-hydroxybenzaldehydes. One consortium produced both the hydroxymethyl and methyl compounds from both 5- and 6-chlorovanillin: it was therefore assumed that the methyl compound was the ultimate reduction product. On the basis of the kinetics of formation of the metabolites, it was concluded that the oxidation and reduction reactions were mechanistically related. In addition to these oxidations and reductions, dehalogenation was observed with one of the consortia. In contrast to the transformations of 5- and 6-chlorovanillin, which produced chlorinated methylcatechols, the corresponding compounds were not observed with 5- and 6-bromovanillin: the former was debrominated, forming 4-methylcatechol, whereas the latter produced 6-bromovanillyl alcohol without demethylation. Similarly, although 3-chloro-4-hydroxybenzaldehyde formed the chlorinated carboxylic acid and the benzyl alcohol, the 3-bromo compound was debrominated with formation of 4-hydroxybenzoic acid and, ultimately, phenol. On prolonged incubation, the halogenated carboxylic acids were generally decarboxylated, so that the final products from these substrates were halogenated catechols or phenols. Reductive processes of the type revealed in this study might therefore plausibly occur in the environment during anaerobic transformation of halogenated aromatic aldehydes containing hydroxyl and/or methoxyl groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号