首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A commentary by Carrión & Fernández (Journal of Biogeography, 2009, 36 , 2202–2203) compared Holocene pollen records with models of potential natural vegetation (PNV) proposed in the phytosociological literature and concluded that the predicted PNV resulted from anthropogenic disturbance. However, the authors misinterpreted PNV, leading to two serious flaws in their assumptions: (1) PNV is not defined as a pre‐anthropic or climax plant community; and (2) PNV is not a concept restricted to the phytosociological method. Therefore we criticize the conclusions expressed in the commentary, and we stress the need for an interdisciplinary approach based on multi‐temporal and multi‐spatial scales to achieve a modern framework for the study of plant communities.  相似文献   

2.
When vegetation trends over time are analysed from an appropriate long‐term perspective using palaeoecological records, the concept of potential natural vegetation (PNV) is unsupported because of continual vegetation changes driven by natural or anthropic forcings. However, some palaeoecological records show long‐lasting (i.e. millennial) vegetation stability at multidecadal to centennial time scales in the absence of natural and human drivers of change, which fits within the definition of PNV. A more detailed palaeoecological analysis of these records shows that they are an exception rather than a rule, and that they cannot be differentiated from other transient ecological states. Therefore, long records of vegetation stability cannot be considered to be valid evidence for PNV. From a palaeoecological perspective, the PNV concept is concluded to be unnecessary, even in cases of multidecadal to centennial vegetation stability in the absence of environmental disturbance.  相似文献   

3.
Question: Is there a need for disturbance mapping integrated in the CircumBoreal Vegetation Mapping Program? Location: Eurasian boreal forest. Disturbance and mapping: The boreal zone is characterized by a multitude of natural and anthropogenic disturbance agents with importance over a wide range of spatial and temporal scales. Disturbance is a prime driver of succession in most of the boreal zone, producing landscape diversity characterized by a large‐scale vegetation mosaic of early to late succession states. When mapping the circumboreal vegetation, spatial extent, time involved from disturbance to recovered condition and likelihood of interacting disturbance types are crucial for how current vegetation is interpreted and subsequently included as map characteristics. In this paper we present examples from the boreal zone where natural and/or anthropogenic disturbance regimes dominate the state and distribution of vegetation, and possibilities for assessing the nature and extent of the disturbed regions using remotely sensed data. Conclusion: Disturbed vegetation occupies large areas in the boreal zone and related vegetation successions should be adequately represented when mapping the zone. In regions where the ‘potential natural vegetation’ is a hypothetical reconstruction from remnants of ‘natural’ vegetation it would be preferable to use the concept of ‘actual real vegetation’ for which remote sensing at coarse, medium and fine resolution is an efficient tool. The Land Cover Classification System (LCCS) may offer sufficient flexibility to incorporate information about the disturbance of circumboreal vegetation.  相似文献   

4.
Abstract. The concept of mapping potential replacement vegetation (PRV) is proposed as a parallel to potential natural vegetation (PNV). Potential replacement vegetation (PRV) is an abstract and hypothetical vegetation which is in balance with climatic and soil factors currently affecting a given habitat, with environmental factors influencing the habitat from outside such as air pollution, and with an abstract anthropogenic influence (management) of given type, frequency and intensity. For every habitat, there is a series of possible PRV-types corresponding to the different anthropogenic influences, e.g. grazing, mowing, trampling or growing cereals. The PRV-concept is especially useful in large-scale mapping (scales > 1 : 25 000) of small areas where replacement vegetation is the focus of attention for managers and land-use planners, for example in nature reserves where the aim is conservation of replacement vegetation managed in a traditional way, or in restoration ecology where the concept may be used for defining restoration goals and evaluating the success of restoration efforts. At smaller scales, PRV-mapping may be useful for revealing the biogeographical patterns of larger areas which may be different from the corresponding PNV patterns, because replacement vegetation and natural vegetation may respond to environmental gradients at different scales. An example of medium-scale PRV-mapping through the coincidence of diagnostic species of vegetation types, based on species distribution grid data, is presented. In cultural landscapes, the advantage of using the PRV-concept instead of PNV is its direct relationship to the replacement vegetation. In the habitat mapping with respect to the replacement vegetation, the PRV concept yields more valuable results than the mapping of actual vegetation, as the latter is strongly affected by spatially variable anthropogenic influences which may be largely independent from climatic and soil factors.  相似文献   

5.
Mediterranean agro-silvo-pastoral systems play a key role in view of the positive contribution that they could offer to a sustainable development of European agriculture. The knowledge of the vegetation dynamics and of the processes and land uses favoring different vegetation types related to the same actual potential natural vegetation (PNV) could represent a sound reference framework for monitoring and managing plant biodiversity in these systems. The aim of the research was to evaluate plant diversity along a gradient of use intensity comparing the actual vegetation versus the PNV. The results of our research showed that in the studied Mediterranean agro-silvo-pastoral system, included in the same environmental unit, human activities enhanced plant biodiversity. Moreover, the case study presented here confirmed the effectiveness of those landscape approaches comparing actual vegetation versus the PNV for plant biodiversity monitoring and reinforced previous studies showing the effect of human activities on plant community diversity at the environmental unit scale in different biogeographical contexts.  相似文献   

6.
Abstract. Since the introduction of ‘potential natural vegetation’ (PNV) as a concept in vegetation science by Tüxen (1956), many PNV-maps with different scales have been made. Tüxen emphasized the great value of PNV-maps for different purposes in land use, landscape planning and nature conservation, in particular with regard to forestry, agriculture and landscape management. Different aspects are discussed in order to examine the validity and applicability of PNV-maps in landscape planning and nature conservation. PNV-maps are useful for the differentiation of natural and landscape units on a small scale (< 1 : 100 000). However, maps of the potential natural vegetation are less useful for purposes of detailed planning on larger scales (> 1 : 100 000). Problems arise, for example, from the often highly hypothetical character of the construction and the practice of taking remnants of ‘natural’ vegetation as a reference object for the PNV. With regard to the goals of modern landscape planning and nature conservation purposes (e.g. conserving biodiversity in the cultural landscape of Central Europe) the exact documentation of the actual real vegetation (ARV) on intermediate and large scales gives much more detailed information than a hypothetical PNV.  相似文献   

7.
This is a response to critical comments concerning the inappropriate use of the potential natural vegetation (PNV) concept made in a recent contribution to the Commentary section of this journal. We consider that the PNV concept has been misinterpreted. PNV has been used extensively in several European countries since the mid‐1950s and was never intended to be used to make a prediction of what vegetation would dominate in an area if human influence were removed. PNV maps express hypothetical assumptions of what corresponds to dominant or natural vegetation in each area. Remnants of the vegetation of the past provided by palaeopalynology and other disciplines provide valuable information for interpreting modern vegetation, but natural changes and anthropogenic influences operating over the last millennia have to be taken into account. Annex I of the Habitats Directive provides a balanced list of habitat types for implementing conservation policies within the European Union.  相似文献   

8.
In this paper, the concerns of Chiarucci et al. ( 2010 ) regarding use of the potential natural vegetation (PNV) concept are addressed, as voiced in the forum section of the Journal of Vegetation Science. First, we rectify some unfounded expectations concerning PNV, including a relationship with prehuman vegetation and phytosociology. Second, we point out issues that pose considerable challenges in PNV and require common agreement. Here, we address the issue of time and disturbance. We propose to use the static PNV concept as a baseline, a null model for landscape assessment and in comparisons. Instead of changing the PNV concept itself, we introduce a new term, potential future natural vegetation (PFV) to cover estimations of potential successional outcomes. Finally, we offer a new view of PNV with which we intend to make the use of PNV estimates more transparent. We formalize the PNV theory into a partial cause‐effect model of vegetation that clearly states which effects on vegetation are factored out during its estimation. Further, we also propose to assess PNV in a probabilistic setting, rather than providing a single estimate for one location. This multiple PNV would reflect our uncertainty about the vegetation entity that could persist at the locality concerned. Such uncertainty arises from the overlap of environmental preferences of different mature vegetation types. Thus reformulated, we argue that the PNV concept has much to offer as a null model, especially in landscape ecology and in site comparisons in space and time.  相似文献   

9.
Construction of potential natural vegetation (PNV) poses particular challenges in landscapes heavily altered by human activity and must be based on transparent, repeatable methods. We integrated the concept of ancient forest (AF) and ancient forest species (AFS) into a four-step procedure of PNV mapping: 1) classification of forest vegetation relevés; 2) selection of those vegetation types that can serve as PNV units, based on AF and AFS; 3) merging of selected vegetation types into five PNV units that can be predicted from a digital morphogenetic soil map; 4) mapping of three additional PNV units based on additional environmental data. The second step, concerning the selection of reference forest vegetation, is of particular interest for PNV construction in Flanders (northern Belgium), where forest cover has been subject to temporal disruption and spatial fragmentation. Among the variety of extant forest recovery states, we chose as PNV units those vegetation types for which a high proportion of relevés had been located in AF and that contained many AFS. As the frequency of AFS depends on site conditions, we only compared and selected vegetation types that are found on similar sites according to average Ellenberg indicator values. While succession is irrelevant for the definition of PNV, colonization rates of AFS can be used to estimate the time required for PNV to be restored in a site.  相似文献   

10.
At a broad (regional to global) spatial scale, tropical vegetation is controlled by climate; at the local scale, it is believed to be determined by interactions between disturbance, vegetation and local conditions (soil and topography) through feedback processes. It has recently been suggested that strong fire–vegetation feedback processes may not be needed to explain tree‐cover patterns in tropical ecosystems and that climate–fire determinism is an alternative possibility. This conclusion was based on the fact that it is possible to reproduce observed patterns in tropical regions (e.g. a trimodal frequency distribution of tree cover) using a simple model that does not explicitly incorporate fire–vegetation feedback processes. We argue that these two mechanisms (feedbacks versus fire–climate control) operate at different spatial and temporal scales; it is not possible to evaluate the role of a process acting at fine scales (e.g. fire–vegetation feedbacks) using a model designed to reproduce regional‐scale pattern (scale mismatch). While the distributions of forest and savannas are partially determined by climate, many studies are providing evidence that the most parsimonious explanation for their environmental overlaps is the existence of feedback processes. Climate is unlikely to be an alternative to feedback processes; rather, climate and fire–vegetation feedbacks are complementary processes at different spatial and temporal scales.  相似文献   

11.
This paper discusses the concept of potential natural vegetation (PNV) in the light of the pollen records available to date for the Macaronesian biogeographical region, with emphasis on the Azores Islands. The classical debate on the convenience or not of the PNV concept has been recently revived in the Canary Islands, where pollen records of pre‐anthropic vegetation seemed to strongly disagree with the existing PNV reconstructions. Contrastingly, more recent PNV model outputs from the Azores Islands show outstanding parallelisms with pre‐anthropic pollen records, at least in qualitative terms. We suggest the development of more detailed quantitative studies to compare these methodologies as an opportunity for improving the performance of both. PNV modelling may benefit by incorporating empirical data on past vegetation useful for calibration and validation purposes, whereas palynology may improve past reconstructions by minimizing interpretative biases linked to differential pollen production, dispersal and preservation.  相似文献   

12.
Abstract. In the past 20 years, several metrics have been developed to quantify various aspects of landscape structure and diversity in space and time, and most have been tested on grid‐based thematic maps. Once landscape patterns have been quantified, their effects on ecological functions can be explained if the expected pattern in the absence of specific processes is known. This type of expected pattern has been termed a neutral landscape model. In the landscape‐ecological literature, researchers traditionally adopt random and fractal computer‐generated neutral landscape models to verify the expected relationship between a given ecological process and landscape spatial heterogeneity. Conversely, little attention has been devoted to distribution patterns of potential natural vegetation (PNV) as an ecological baseline for the evaluation of pattern‐process interactions at the landscape scale. As an application for demonstration, we propose a neutral model based on PNV as a possible reference for a quantitative comparison with actual vegetation (AC V) distribution. Within this context, we introduce an evenness‐like index termed ‘actual‐to‐potential entropy ratio’ (HA/P = HACV/HPNV, where H is Shannon's entropy). Results show that, despite the hypothetical character of most PNV maps, the use of PNV distribution as a baseline for a quantitative comparison with ACV distribution may represent a first step towards a general model for the evaluation of the effects of disturbance on vegetation patterns and diversity.  相似文献   

13.
14.
Spatial and temporal modelling of parasite transmission and risk assessment require relevant spatial information at appropriate spatial and temporal scales. There is now a large literature that demonstrates the utility of satellite remote sensing and spatial modelling within geographical information systems (GIS) and firmly establishes these technologies as the key tools for spatial epidemiology. This review outlines the strength of satellite remotely sensed data for spatial mapping of landscape characteristics in relation to disease reservoirs, host distributions and human disease. It is suggested that current satellite technology can fulfill the spatial mapping needs of disease transmission and risk modelling, but that temporal resolution, which is a function of the satellite data acquisition characteristics, may be a limitating factor for applications requiring information about landscape or ecosystem dynamics. The potential of the Modis sensor for spatial epidemiology is illustrated with reference to mapping spatial and temporal vegetation dynamics and small mammal parasite hosts on the Tibetan plateau. Future research directions and priorities for landscape epidemiology are considered.  相似文献   

15.
Relationship between avian range limits and plant transition zones in Maine   总被引:1,自引:0,他引:1  
Aim To determine if vegetation complexity associated with transition zones may be a contributing factor affecting bird species distributions in Maine, USA, and in increased numbers of bird species at about 45° north latitude in northeastern North America. Location Maine, USA; North America north of Mexico. Methods We delineated the ranges within Maine (86,156 km2) of 186 bird species and 240 woody plants using literature and expert review. Maps showing species richness and numbers of range limits, at 324 km2 resolution, were developed for woody plants and groups of breeding birds: forest specialists, forest generalists, and those that used barren and urban habitats, early successional areas, and wetlands or open water. Two plant transition zones for Maine were identified previously, with the north–south transition zone mapped across eastern North America. Patterns in bird distribution maps were compared to woody plant maps and to transition zones. Results When the distributions of forest specialists were compared to the north–south vegetation transition zone in Maine, they were spatially coincident, but were not for other groups. Forest specialists had more species with range limits in the state (61%) than generalists (13%) or any other group. At a continental‐scale, the vegetation transition zone within eastern North America agreed fairly well with the areas of highest bird richness. Main conclusions A bird transition zone occurs in Maine and across eastern North America, akin to and overlapping the vegetation transition zone. Seasonality is likely the primary source of the inverse gradient in bird richness in the eastern USA, as reported by others. However, vegetation structure and habitat selection at very broad spatial scales appear to contribute to the reversed gradient. North of the vegetation transition zone, forest structure is simpler and coniferous forests more dominant, and this may contribute to reduced bird species richness. However, the northern (> 49°) typical gradient in bird species richness has been related to many hypotheses, and several are likely involved in the genesis of the gradient.  相似文献   

16.
Classic ecological restoration seems tacitly to have taken the Clementsian “balance of nature” paradigm for granted: plant succession terminates in a climax community which remains at equilibrium until exogenously disturbed after which the process of succession is restarted until the climax is reached. Human disturbance is regarded as unnatural and to have commenced in the Western Hemisphere at the time of European incursion. Classic ecological restoration thus has a clear and unambiguous target and may be conceived as aiming to foreshorten the natural processes that would eventually lead to the climax of a given site, which may be determined by its state at “settlement”. According to the new “flux of nature” paradigm in ecology a given site has notelos and is constantly changing. Human disturbance is ubiquitous and long-standing, and at certain spatial and temporal scales is “incorporated”. Any moment in the past 10,000 years that may be selected as a benchmark for restoration efforts thus appears to be arbitrary. Two prominent conservationists have therefore suggested that the ecological conditions in North America at the Pleistocene—Holocene boundary, prior to the anthropogenic extinction of the Pleistocene megafauna, be the target for ecological restoration. That suggestion explicitly assumes evolutionary temporal scales and continental spatial scales as the appropriate frame of reference for ecological restoration. However, ecological restoration should be framed in ecological spatio-temporal scales, which may be defined temporally in reference to ecological processes such as disturbance regimes and spatially in reference to ecological units such as landscapes, ecosystems, and biological provinces. Ecological spatio-temporal scales are also useful in achieving a scientifically defensible distinction between native and exotic species, which plays so central a role in the practice of ecological restoration and the conservation of biodiversity. Because post-settlement human disturbances have exceeded the limits of such scales, settlement conditions can be justified scientifically as appropriate targets of restoration efforts without recourse to obsolete teleological concepts of equilibria and without ignoring the presence and ecological influence of indigenous peoples.  相似文献   

17.
In recent decades, human–Rangifer (reindeer and caribou) interactions have increasingly been studied from a scientific perspective. Many of the studies have examined Norwegian wild reindeer or caribou in North America. It is often questioned whether results from these studies can be applied to reindeer in managed herds, as these animals have been exposed to domestication and are also more used to humans. In order to examine the domesticated reindeer’s reactions to various disturbance sources, we reviewed 18 studies of the effects of human activity and infrastructure on 12 populations of domesticated reindeer and compared these to studies on wild reindeer and caribou; based on this, we discuss the effects of domestication and tameness on reindeer responses to anthropogenic disturbance. We also consider the relevance of spatial and temporal scales and data collection methods when evaluating the results of these studies. The reviewed studies showed that domesticated reindeer exhibit avoidance behaviours up to 12 km away from infrastructure and sites of human activity and that the area they avoid may shift between seasons and years. Despite a long domestication process, reindeer within Sami reindeer-herding systems exhibit similar patterns of large-scale avoidance of anthropogenic disturbance as wild Rangifer, although the strength of their response may sometimes differ. This is not surprising since current Sami reindeer husbandry represents an extensive form of pastoralism, and the reindeer are not particularly tame. To obtain a true picture of how reindeer use their ranges, it is of fundamental importance to study the response pattern at a spatial and temporal scale that is relevant to the reindeer, whether domesticated or wild.  相似文献   

18.
We discuss the usefulness of the concept of Potential Natural Vegetation (PNV), which describes the expected state of mature vegetation in the absence of human intervention. We argue that it is impossible to model PNV because of (i) the methodological problems associated to its definition and (ii) the issues related to the ecosystems dynamics.We conclude that the approach to characterizing PNV is unrealistic and provides scenarios with limited predictive power. In places with a long‐term human history, interpretations of PNV need to be very cautious, and explicit acknowledgement made of the limitations inherent in available data.  相似文献   

19.
内蒙古荒漠草原植被盖度的空间异质性动态分析   总被引:3,自引:0,他引:3  
颜亮  周广胜  张峰  隋兴华  平晓燕 《生态学报》2012,32(13):4017-4024
利用半方差函数分析法对内蒙古荒漠草原生长盛期(6—8月)的植被盖度时空变异特征的研究表明,荒漠草原生长盛期的植被盖度半方差函数形态符合指数模型,但函数曲线的形态和各参数在不同月份变化较大。其中,6月的植被盖度变程最大,达到100 m;7月植被盖度的半方差函数形态具有巢式等级结构;8月植被盖度的变程最小,仅为15 m,但空间变异程度最高。3个月的结构比介于72%—85%,具有较强的空间自相关。各向异性分析表明,6月植被盖度在135°方向的半方差函数值明显低于其它3个方向(0°、45°、90°),具有各向异性特征;而7月和8月植被盖度的各向异性比接近于1,表现为各向同性。研究结果表明,荒漠草原植被盖度空间异质性的时间动态不容忽视,在野外采样或制图时,要根据时间合理控制采样范围。  相似文献   

20.
The spatial variation in epilithic lichen community structure was investigated as part of a larger study of the vegetation and ecology of the tall limestone cliffs within the Niagara Escarpment Biosphere Reserve in southern Ontario, Canada. The cover of all lichen taxa was visually estimated for a total of 199 samples taken from the top, middle, or bottom of the cliff face at five sites. Twelve environmental variables were also measured. Twenty-seven lichen taxa were identified on the samples. Multivariate ordinations of species composition (DCA, CCA, PCCA) revealed variation in community structure on multiple scales, but no groupings of sites that would have suggested the presence of several distinct species assemblages. A gradient in species composition from north to south, most clearly reflected in the decreasing cover of foliose and fruticose species, may reflect a gradient in human disturbance. There was also intermediate-scale patchiness in species composition in a horizontal plane across cliffs, but despite earlier claims made in the literature, no evidence of vertical zonation of the lichens on cliffs was found. Species composition also responded to small-scale factors possibly related to exposure, light, or moisture. Unlike community composition, the total cover of all lichens was homogeneous over large spatial scales and varied only on a small scale, illustrating that scale as well as resolution of a study may influence the ecological patterns seen. More than half of the species found on the Niagara Escarpment are rare on rock substrates elsewhere in southern Ontario, and two are new for North America (Candelariella heidelbergensis (Nyl.) Poelt and Lecanora perpruinosa Fröberg). The result that cliffs support a distinct flora containing many rare species suggests that they are a reservoir for biodiversity not just for vascular plants, but also for lichens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号