首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TMEM106B variants are genetically associated with frontotemporal lobar degeneration with TDP‐43 pathology (FTLD‐TDP), and are considered a major risk factor for this disease. As TMEM106B may be involved in other pathologies such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), uncovering its cellular functions has become a priority. In this issue of The EMBO Journal, Schwenk et al ( 2014 ) combine loss‐of‐function experiments, live imaging and proteomics to unveil the physiological roles played by TMEM106B and its binding partner MAP6 in lysosomal function and transport.  相似文献   

2.
Using comparative genomic hybridization analysis for an autism spectrum disorder (ASD) patient, a 73‐Kb duplication at 19q13.33 (nt. 49 562 755–49 635 956) including LIN7B and 5 other genes was detected. We then identified a novel frameshift mutation in LIN7B in another ASD patient. Since LIN7B encodes a scaffold protein essential for neuronal function, we analyzed the role of Lin‐7B in the development of cerebral cortex. Acute knockdown of Lin‐7B with in utero electroporation caused a delay in neuronal migration during corticogenesis. When Lin‐7B was knocked down in cortical neurons in one hemisphere, their axons failed to extend efficiently into the contralateral hemisphere after leaving the corpus callosum. Meanwhile, enhanced expression of Lin‐7B had no effects on both cortical neuron migration and axon growth. Notably, silencing of Lin‐7B did not affect the proliferation of neuronal progenitors and stem cells. Taken together, Lin‐7B was found to play a pivotal role in corticogenesis through the regulation of excitatory neuron migration and interhemispheric axon growth, while further analyses are required to directly link functional defects of Lin‐7B to ASD pathophysiology.

  相似文献   


3.
4.
TMEM106B was identified as a major risk factor in a genome-wide association study for frontotemporal lobar degeneration (FTLD) with TAR DNA-binding protein (TDP)-43 pathology. The most significant association of TMEM106B single nucleotide polymorphisms with risk of FTLD-TDP was observed in patients with progranulin (GRN) mutations. Subsequent studies suggested an inverse correlation between TMEM106B expression and GRN levels in patient serum. However, in this study, this was not confirmed as we failed to detect a significant alteration of GRN levels upon knockdown or exogenous expression of TMEM106B in heterologous cells. To provide a basis for understanding TMEM106B function in health and disease, we investigated the membrane orientation and subcellular localization of this completely uncharacterized protein. By differential membrane extraction and sequential mutagenesis of potential N-glycosylation sites, we identified TMEM106B as a type 2 integral membrane protein with a highly glycosylated luminal domain. Glycosylation is partially required for the transport of TMEM106B beyond the endoplasmic reticulum to late cellular compartments. Endogenous as well as overexpressed TMEM106B localizes to late endosomes and lysosomes. Interestingly, the inhibition of vacuolar H(+)-ATPases significantly increased the levels of TMEM106B, a finding that may provide an unexpected biochemical link to GRN, because this protein is also strongly increased under the same conditions. Our findings provide a biochemical and cell biological basis for the understanding of the pathological role of TMEM106B in FTLD, an incurable neurodegenerative disorder.  相似文献   

5.
Mutation in TAR DNA binding protein 43 (TDP‐43) is a causative factor of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Neurodegeneration may not require the presence of pathogenic TDP‐43 in all types of relevant cells. Rather, expression of pathogenic TDP‐43 in neurons or astrocytes alone is sufficient to cause cell‐autonomous or non‐cell‐autonomous neuron death in transgenic rats. How pathogenic TDP‐43 in astrocytes causes non‐cell‐autonomous neuron death, however, is not clear. Here, we examined the effect of pathogenic TDP‐43 on gene expression in astrocytes. Microarray assay revealed that pathogenic TDP‐43 in astrocytes preferentially altered expression of the genes encoding secretory proteins. Whereas neurotrophic genes were down‐regulated, neurotoxic genes were up‐regulated. Representative genes Lcn2 and chitinase‐3‐like protein 1 were markedly up‐regulated in astrocytes from primary culture and intact transgenic rats. Furthermore, synthetic chitinase‐3‐like protein 1 induced neuron death in a dose‐dependent manner. Our results suggest that TDP‐43 pathogenesis is associated with the simultaneous induction of multiple neurotoxic genes in astrocytes, which may synergistically produce adverse effects on neuronal survival and contribute to non‐cell‐autonomous neuron death.

  相似文献   


6.
Chromogranin B (CHGB) is the major matrix protein in human catecholamine storage vesicles. CHGB genetic variation alters catecholamine secretion and blood pressure. Here, effective Chgb protein under‐expression was achieved by siRNA in PC12 cells, resulting in ~ 48% fewer secretory granules on electron microscopy, diminished capacity for catecholamine uptake (by ~ 79%), and a ~ 73% decline in stores available for nicotinic cholinergic‐stimulated secretion. In vivo, loss of Chgb in knockout mice resulted in a ~ 35% decline in chromaffin granule abundance and ~ 44% decline in granule diameter, accompanied by unregulated catecholamine release into plasma. Over‐expression of CHGB was achieved by transduction of a CHGB‐expressing lentivirus, resulting in ~ 127% elevation in CHGB protein, with ~ 122% greater abundance of secretory granules, but only ~ 14% increased uptake of catecholamines, and no effect on nicotinic‐triggered secretion. Human CHGB protein and its proteolytic fragments inhibited nicotinic‐stimulated catecholamine release by ~ 72%. One conserved‐region CHGB peptide inhibited nicotinic‐triggered secretion by up to ~ 41%, with partial blockade of cationic signal transduction. We conclude that bi‐directional quantitative derangements in CHGB abundance result in profound changes in vesicular storage and release of catecholamines. When processed and released extra‐cellularly, CHGB proteolytic fragments exert a feedback effect to inhibit catecholamine secretion, especially during nicotinic cholinergic stimulation.

  相似文献   


7.
8.
The amyloid precursor protein (APP) is a type I transmembrane glycoprotein better known for its participation in the physiopathology of Alzheimer disease as the source of the beta amyloid fragment. However, the physiological functions of the full length protein and its proteolytic fragments have remained elusive. APP was first described as a cell‐surface receptor; nevertheless, increasing evidence highlighted APP as a cell adhesion molecule. In this review, we will focus on the current knowledge of the physiological role of APP as a cell adhesion molecule and its involvement in key events of neuronal development, such as migration, neurite outgrowth, growth cone pathfinding, and synaptogenesis. Finally, since APP is over‐expressed in Down syndrome individuals because of the extra copy of chromosome 21, in the last section of the review, we discuss the potential contribution of APP to the neuronal and synaptic defects described in this genetic condition.

  相似文献   


9.
Girdin, an actin‐binding protein, possesses versatile functions in a multitude of cellular processes. Although several studies have shown that Girdin is involved in the cell DNA synthesis, actin cytoskeleton rearrangement, and cell motility, the molecular mechanisms of Girdin in tumor development and progression remain elusive. In this study, through over‐expression and siRNA experiments, we found that Girdin increased migration of LN229 human glioblastoma cells. On the other hand, reducing Girdin impaired F‐actin polymerization, which is essential for cell morphogenesis and motility. Matrix metalloproteinase 2, critical in human glioma migration and invasion, was down‐regulated upon Girdin reduction and led to decreased invasion in vitro and in vivo. In addition, silencing Girdin expression impaired the phosphorylation of two important adhesion molecules, integrin β1 and focal adhesion kinase, resulting in cell adhesion defects. Our immunohistochemical study on human gliomas tissue sections indicated that Girdin expression was positively related with glioma malignancy, supporting the in vitro and in vivo results from cell lines. Collectively, our findings suggest a critical role for Girdin in glioma infiltration.

  相似文献   


10.
11.
Intravenous immunoglobulin (IVIG) contains anti‐amyloid‐β antibodies as well as antibodies providing immunomodulatory effects that may modify chronic inflammation in Alzheimer's disease. Answers to important questions about IVIG transport into the central nervous system and assessments of any impact amyloid‐β has on this transport can be provided by in vitro models of the blood–brain barrier. In this study, amyloid‐β[1‐42] was pre‐aggregated into fibrillar or oligomeric structures, and various concentrations were incubated in the brain side of the blood–brain barrier model, followed by IVIG administration in the blood side at the therapeutically relevant concentrations of 5 and 20 mg/mL. IVIG accumulated in the brain side at physiologically relevant levels, with amyloid‐β pre‐incubation increasing IVIG accumulation. The increased transport effect was dependent on amyloid‐β structural form, amyloid‐β concentration, and IVIG dose. IVIG was found to decrease monocyte chemotactic protein‐1 levels 6.5–18% when low amyloid‐β levels were present and increase levels 4.2–23% when high amyloid‐β levels were present. Therefore, the presence, concentration, and structure of amyloid‐β plays an important role in the effect of IVIG therapy in the brain.

  相似文献   


12.
Glutamate transport is a critical process in the brain that maintains low extracellular levels of glutamate to allow for efficient neurotransmission and prevent excitotoxicity. Loss of glutamate transport function is implicated in epilepsy, traumatic brain injury, and amyotrophic lateral sclerosis. It remains unclear whether or not glutamate transport can be modulated in these disease conditions to improve outcome. Here, we show that sirtuin (SIRT)4, a mitochondrial sirtuin, is up‐regulated in response to treatment with the potent excitotoxin kainic acid. Loss of SIRT4 leads to a more severe reaction to kainic acid and decreased glutamate transporter expression and function in the brain. Together, these results indicate a critical and novel stress response role for SIRT4 in promoting proper glutamate transport capacity and protecting against excitotoxicity.

  相似文献   


13.
Tuftsin (Thr‐Lys‐Pro‐Arg) is a natural immunomodulating peptide found to stimulate phagocytosis in macrophages/microglia. Tuftsin binds to the receptor neuropilin‐1 (Nrp1) on the surface of cells. Nrp1 is a single‐pass transmembrane protein, but its intracellular C‐terminal domain is too small to signal independently. Instead, it associates with a variety of coreceptors. Despite its long history, the pathway through which tuftsin signals has not been described. To investigate this question, we employed various inhibitors to Nrp1's coreceptors to determine which route is responsible for tuftsin signaling. We use the inhibitor EG00229, which prevents tuftsin binding to Nrp1 on the surface of microglia and reverses the anti‐inflammatory M2 shift induced by tuftsin. Furthermore, we demonstrate that blockade of transforming growth factor beta (TGFβ) signaling via TβR1 disrupts the M2 shift similar to EG00229. We report that tuftsin promotes Smad3 phosphorylation and reduces Akt phosphorylation. Taken together, our data show that tuftsin signals through Nrp1 and the canonical TGFβ signaling pathway.

  相似文献   


14.
The role of physical exercise as a neuroprotective agent against ischemic injury has been extensively discussed. Nevertheless, the mechanisms underlying the effects of physical exercise on cerebral ischemia remain poorly understood. Here, we investigate the hypothesis that physical exercise increases ischemic tolerance by decreasing the induction of cellular apoptosis and glutamate release. Rats (n = 50) were submitted to a swimming exercise protocol for 8 weeks. Hippocampal slices were then submitted to oxygen and glucose deprivation. Cellular viability, pro‐apoptotic markers (Caspase 8, Caspase 9, Caspase 3, and apoptosis‐inducing factor), and glutamate release were analyzed. The percentage of cell death, the amount of glutamate release, and the expression of the apoptotic markers were all decreased in the exercise group when compared to the sedentary group after oxygen and glucose deprivation. Our results suggest that physical exercise protects hippocampal slices from the effects of oxygen and glucose deprivation, probably by a mechanism involving both the decrease of glutamatergic excitotoxicity and apoptosis induction.

  相似文献   


15.
Niemann Pick type C (NPC1) is a rare fatal hereditary cholesterol storage disease associated with a massive Purkinje cells loss. The mechanisms leading to neurodegeneration are still poorly understood. Different laboratories pointed to hypersensitivity to cytotoxic effects of statins (HMG‐CoA reductase inhibitors) in NPC1 and suggested an underlying lack of geranylgeranyl pyrophosphate (GGPP). GGPP is a non‐sterol isoprenoid essential for cell survival and differentiation. We measured GGPP levels in cerebella of a NPC1 mouse model and of wild‐type littermates and found a physiological increase of GGPP levels between post‐natal days 21 and 49 in wild‐type mice but not in NPC mice. This further supports the hypothesis that Purkinje cell loss may be due to an extremely low level of GGPP. The progressive Purkinje cell loss in NPC starts between p21 and p49. To test the hypothesis, we used long‐term organotypic slice cultures of NPC1 mice that display the natural history of NPC1 disease in vitro and tested if chronic administration of GGPP might prevent Purkinje cell loss. We did not see a beneficial effect. This suggests, in contrast to the expectations, that the relative lack of GGPP may not significantly contribute to mechanisms of Purkinje cell loss in NPC1.

  相似文献   


16.
The ubiquitin proteasome system (UPS) is impaired in Huntington's disease, a devastating neurodegenerative disorder. Sulforaphane, a naturally occurring compound, has been shown to stimulate UPS activity in cell cultures. To test whether sulforaphane enhances UPS function in vivo, we treated UPS function reporter mice ubiquitously expressing the green fluorescence protein (GFP) fused to a constitutive degradation signal that promotes its rapid degradation in the conditions of a healthy UPS. The modified GFP is termed GFP UPS reporter (GFPu). We found that both GFPu and ubiquitinated protein levels were significantly reduced and the three peptidase activities of the proteasome were increased in the brain and peripheral tissues of the mice. Interestingly, sulforaphane treatment also enhanced autophagy activity in the brain and the liver. To further examine whether sulforaphane promotes mutant huntingtin (mHtt) degradation, we treated Huntington's disease cells with sulforaphane and found that sulforaphane not only enhanced mHtt degradation but also reduced mHtt cytotoxicity. Sulforaphane‐mediated mHtt degradation was mainly through the UPS pathway as the presence of a proteasome inhibitor abolished this effect. Taken together, these data indicate that sulforaphane activates protein degradation machineries in both the brain and peripheral tissues and may be a therapeutic reagent for Huntington's disease and other intractable disorders.

  相似文献   


17.
Previous studies have shown that fastigial nucleus stimulation (FNS) reduces tissue damage resulting from focal cerebral ischemia. Although the mechanisms of neuroprotection induced by FNS are not entirely understood, important data have been presented in the past two decades. MicroRNAs (miRNAs) are a newly discovered group of non‐coding small RNA molecules that negatively regulate target gene expression and are involved in the regulation of cell proliferation and cell apoptosis. To date, no studies have demonstrated whether miRNAs can serve as mediators of the brain's response to FNS, which leads to endogenous neuroprotection. Therefore, this study investigated the profiles of FNS‐mediated miRNAs. Using a combination of deep sequencing and microarray with computational analysis, we identified a novel miRNA in the rat ischemic cortex after 1 h of FNS. This novel miRNA (PC‐3p‐3469_406), herein referred to as rno‐miR‐676‐1, was upregulated in rats with cerebral ischemia after FNS. In vivo observations indicate that this novel miRNA may have antiapoptotic effects and contribute to neuroprotection induced by FNS. Our study provides a better understanding of neuroprotection induced by FNS.

  相似文献   


18.
19.
Excitatory amino acid transporters (EAATs) regulate glutamatergic signal transmission by clearing extracellular glutamate. Dysfunction of these transporters has been implicated in the pathogenesis of various neurological disorders. Previous studies have shown that venom from the spider Parawixia bistriata and a purified compound (Parawixin1) stimulate EAAT2 activity and protect retinal tissue from ischemic damage. In the present study, the EAAT2 subtype specificity of this compound was explored, employing chimeric proteins between EAAT2 and EAAT3 transporter subtypes and mutants to characterize the structural region targeted by the compound. This identified a critical residue (Histidine‐71 in EAAT2 and Serine‐45 in EAAT3) in transmembrane domain 2 (TM2) to be important for the selectivity between EAAT2 and EAAT3 and for the activity of the venom. Using the identified residue in TM2 as a structural anchor, several neighboring amino acids within TM5 and TM8 were identified to also be important for the activity of the venom. This structural domain of the transporter lies at the interface of the rigid trimerization domain and the central substrate‐binding transport domain. Our studies suggest that the mechanism of glutamate transport enhancement involves an interaction with the transporter that facilitates the movement of the transport domain.

  相似文献   


20.
TMEM106B is a major risk factor for frontotemporal lobar degeneration with TDP‐43 pathology. TMEM106B localizes to lysosomes, but its function remains unclear. We show that TMEM106B knockdown in primary neurons affects lysosomal trafficking and blunts dendritic arborization. We identify microtubule‐associated protein 6 (MAP6) as novel interacting protein for TMEM106B. MAP6 over‐expression inhibits dendritic branching similar to TMEM106B knockdown. MAP6 knockdown fully rescues the dendritic phenotype of TMEM106B knockdown, supporting a functional interaction between TMEM106B and MAP6. Live imaging reveals that TMEM106B knockdown and MAP6 overexpression strongly increase retrograde transport of lysosomes in dendrites. Downregulation of MAP6 in TMEM106B knockdown neurons restores the balance of anterograde and retrograde lysosomal transport and thereby prevents loss of dendrites. To strengthen the link, we enhanced anterograde lysosomal transport by expressing dominant‐negative Rab7‐interacting lysosomal protein (RILP), which also rescues the dendrite loss in TMEM106B knockdown neurons. Thus, TMEM106B/MAP6 interaction is crucial for controlling dendritic trafficking of lysosomes, presumably by acting as a molecular brake for retrograde transport. Lysosomal misrouting may promote neurodegeneration in patients with TMEM106B risk variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号