首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proximal promoter of mouse mu-opioid receptor (MOR) gene is the dominant promoter for directing MOR-1 gene expression in brain. Sp1/Sp3 (Sps) and poly(C) binding protein 1 (PCBP) bind to a cis-element of MOR proximal promoter. Functional interaction between Sps and PCBP and their individual roles on MOR proximal core promoter were investigated using SL2 cells, devoid of Sps and PCBP. Each factor contributed differentially to the promoter, with a rank order of activity Sp1>Sp3>PCBP. Functional analysis suggested the interplay of Sps and PCBP in an additive manner. The in vivo binding of individual Sps or PCBP to MOR proximal promoter was demonstrated using chromatin immunoprecipitation (ChIP). Re-ChIP assays further suggested simultaneous bindings of Sps and PCBP to the proximal promoter, indicating physiologically relevant communication between Sps and PCBP. Collectively, results documented that a functional coordination between Sps and PCBP contributed to cell-specific MOR gene expression.  相似文献   

2.
Previously, a single-stranded (ss) DNA element, polypyrimidine (PPy) element, was found to be important for the proximal promoter activity of mouse micro-opioid receptor (MOR) gene in a neuronal cell model. In this study, we identified the presence of unknown ssDNA binding proteins specifically bound to MOR ssPPy element in the mouse brain, implicating the physiological significance of these proteins. To identify the ssDNA binding proteins, yeast one-hybrid system with PPy element as the bait was used to screen a mouse brain cDNA library. The clone encoding poly C binding protein (PCBP) was obtained. Its full-length cDNA sequence and protein with molecular weight approximately 38 kDa were confirmed. Electrophoretic mobility shift analysis (EMSA) revealed that PCBP bound to ssPPy element, but not doubled-stranded, in a sequence-specific manner. EMSA with anti-PCBP antibody demonstrated the involvement of PCBP in MOR ssPPy/proteins complexes of mouse brain and MOR expressing neuroblastoma NMB cells. Functional analysis showed that PCBP trans-activated MOR promoter as well as a heterologous promoter containing MOR PPy element. Importantly, ectopic expression of PCBP in NMB cells up-regulated the expression level of endogenous MOR gene in vivo in a dose-dependent manner. Collectively, above results suggest that PCBP participates in neuronal MOR gene expression.  相似文献   

3.
4.
5.
Zheng Y  Zhang L  Jia X  Wang H  Hu Y 《FEBS letters》2012,586(2):122-126
In this study, the evolutionarily conserved intracellular adaptor protein, receptor of activated C kinase 1 (RACK1) was identified as a novel interaction partner of protein inhibitor of activated STAT 2 (PIAS2) using a yeast two-hybrid screening system. The direct interaction and co-localization of RACK1 with PIAS2 was confirmed by immunoprecipitation and immunofluorescence staining analysis, respectively. The 5th to 7th Trp-Asp 40 (5-7 WD40) repeats of RACK1 were identified as the minimal domain required for interaction with PIAS2 by deletion analysis. Furthermore, multiple PIAS2-domains, particularly the 'PINIT' and RLD domains, bind the RACK1 5-7 WD40 domain.  相似文献   

6.
7.
8.
Mesial temporal lobe epilepsy (MTLE) is characterized by spontaneous recurrent complex partial seizures. Increased neurogenesis and neuronal plasticity have been reported in animal models of MTLE, but not in detail in human MTLE cases. Here, we showed that receptor for activated C kinase 1 (RACK1) was expressed in the hippocampus and temporal cortex of the MTLE human brain. Interestingly, most of the cells expressing RACK1 in the epileptic temporal cortices co‐expressed both polysialylated neural cell adhesion molecules, the migrating neuroblast marker, and the beta‐tubulin isotype III, an early neuronal marker, suggesting that these cells may be post‐mitotic neurons in the early phase of neuronal development. A subpopulation of RACK1‐positive cells also co‐express neuronal nuclei, a mature neuronal marker, suggesting that epilepsy may promote the generation of new neurons. Moreover, in the epileptic temporal cortices, the co‐expression of both axonal and dendritic markers in the majority of RACK1‐positive cells hints at enhanced neuronal plasticity. The expression of β‐tubulin II (TUBB2B) associated with neuronal migration and positioning, was decreased. This study is the first to successfully identify a single population of cells expressing RACK1 in the human temporal cortex and the brain of the animal model, which can be up‐regulated in epilepsy. Therefore, it is possible that these cells are functionally relevant to the pathophysiology of epilepsy.

  相似文献   


9.
Liedtke CM  Wang X 《Biochemistry》2006,45(34):10270-10277
Regulation of the CFTR Cl channel function involves a protein complex of activated protein kinase Cepsilon (PKCepsilon) bound to RACK1, a receptor for activated C kinase, and RACK1 bound to the human Na(+)/H(+) exchanger regulatory factor (NHERF1) in human airway epithelial cells. Binding of NHERF1 to RACK1 is mediated via a NHERF1-PDZ1 domain. The goal of this study was to identify the binding motif for human NHERF1 on RACK1. We examined the site of binding of NHERF1 on RACK1 using peptides encoding the seven WD40 repeat units of human RACK1. One WD repeat peptide, WD5, directly binds NHERF1 and the PDZ1 domain with similar EC(50) values, blocks binding of recombinant RACK1 and NHERF1, and pulls down endogenous RACK1 from Calu-3 cell lysate in a dose-dependent manner. The remaining WD repeat peptides did not block RACK1-NHERF1 binding. An 11-amino acid peptide encoding a site on the PDZ1 domain blocks binding of the WD5 repeat peptide with the PDZ1 domain. An N-terminal 12-amino acid segment of the WD5 repeat peptide, which comprises the first of four antiparallel beta-strands, dose-dependently binds to the PDZ1 domain of NHERF1 and blocks binding of the PDZ1 domain to RACK1. These results suggest that the binding site might form a beta-turn with topology sufficient for binding of NHERF1. Our results also demonstrate binding of NHERF to RACK1 at the WD5 repeat, which is distinct from the PKCepsilon binding site on the WD6 repeat of RACK1.  相似文献   

10.
11.
Adiponectin is an adipose tissue derived hormone with anti-diabetic and insulin-sensitizing properties. Two adiponectin receptors, AdipoR1 and AdipoR2, have recently been identified, yet the signaling pathways triggered through adiponectin receptors remain to be elucidated. Using a yeast two-hybrid screen, we identified an adaptor protein, receptor for activated protein kinase C1 (RACK1), as an interacting partner of human AdipoR1. RACK1 was confirmed to interact with AdipoR1 by co-immunoprecipitation and co-localization analysis in mammalian cells. The interaction was enhanced by adiponectin stimulation. In addition, the knockdown of RACK1 by RNA interference inhibited adiponectin-stimulated glucose uptake in HepG2 cells. These results suggest that RACK1 may act as a key bridging factor in adiponectin signaling transduction through interacting with AdipoR1.  相似文献   

12.
13.
14.
15.
RACK1 is an intracellular receptor for the serine/ threonine protein kinase C. Previously, we demonstrated that RACK1 also interacts with the Src protein-tyrosine kinase. RACK1, via its association with these protein kinases, may play a key role in signal transduction. To further characterize the Src-RACK1 interaction and to analyze mechanisms by which cross-talk occurs between the two RACK1-linked signaling kinases, we identified sites on Src and RACK1 that mediate their binding, and factors that regulate their interaction. We found that the interaction of Src and RACK1 is mediated, in part, by the SH2 domain of Src and by phosphotyrosines in the sixth WD repeat of RACK1, and is enhanced by serum or platelet-derived growth factor stimulation, protein kinase C activation, and tyrosine phosphorylation of RACK1. To the best of our knowledge, this is the first report of tyrosine phosphorylation of a member of the WD repeat family of proteins. We think that tyrosine phosphorylation of these proteins is an important mechanism of signal transduction in cells.  相似文献   

16.
It has been reported that mumps virus protein V or the C-terminal Cys-rich region of protein V (Vsp) is associated with blocking of the interferon (IFN) signal transduction pathway through a decrease in STAT-1 production. The intracellular target of the V protein was investigated by using a two-hybrid screening system with Vsp as bait. Full-length V protein and Vsp were able to bind to RACK1, and the interaction did not require two WD domains, WD1 and WD2, in RACK1. A significant interaction between V protein and RACK1 was also demonstrated in cells persistently infected with mumps virus (FLMT cells), and the formation of the complex was not affected by treatment with IFN. On the other hand, in uninfected cells, STAT-1 was associated with the long form of the beta subunit of the alpha IFN receptor, and this association was mediated by the function of RACK1 as an adaptor protein. Immunoprecipitation and glutathione S-transferase pull-down experiments revealed that the association of RACK1 or mumps virus V protein with the IFN receptor was undetectable in mumps virus-infected cells. Furthermore, RACK1 interacted with mumps virus V protein with a higher affinity than STAT-1 did. Therefore, it is suggested that mumps virus V protein has the ability to interact strongly with RACK1 and consequently to bring about the disruption of the complex formed from STAT-1, RACK1, and the IFN receptor.  相似文献   

17.
Fibroblast growth factor 21 (FGF21) acts as an anti‐atherosclerotic agent. However, the specific mechanisms governing this regulatory activity are unclear. Autophagy is a highly conserved cell stress response which regulates atherosclerosis (AS) by reducing lipid droplet degradation in foam cells. We sought to assess whether FGF21 could inhibit AS by regulating cholesterol metabolism in foam cells via autophagy and to elucidate the underlying molecular mechanisms. In this study, ApoE?/? mice were fed a high‐fat diet (HFD) with or without FGF21 and FGF21 + 3‐Methyladenine (3MA) for 12 weeks. Our results showed that FGF21 inhibited AS in HFD‐fed ApoE?/? mice, which was reversed by 3MA treatment. Moreover, FGF21 increased plaque RACK1 and autophagy‐related protein (LC3 and beclin‐1) expression in ApoE?/? mice, thus preventing AS. However, these proteins were inhibited by LV‐RACK1 shRNA injection. Foam cell development is a crucial determinant of AS, and cholesterol efflux from foam cells represents an important defensive measure of AS. In this study, foam cells were treated with FGF21 for 24 hours after a pre‐treatment with 3MA, ATG5 siRNA or RACK1 siRNA. Our results indicated that FGF21‐induced autophagy promoted cholesterol efflux to reduce cholesterol accumulation in foam cells by up‐regulating RACK1 expression. Interestingly, immunoprecipitation results showed that RACK1 was able to activate AMPK and interact with ATG5. Taken together, our results indicated that FGF21 induces autophagy to promote cholesterol efflux and reduce cholesterol accumulation in foam cells through RACK1‐mediated AMPK activation and ATG5 interaction. These results provided new insights into the molecular mechanisms of FGF21 in the treatment of AS.  相似文献   

18.
In past studies, we demonstrated regulation of CFTR Cl channel function by protein kinase C (PKC)- through the binding of PKC- to RACK1 (a receptor for activated C-kinase) and of RACK1 to human Na+/H+ exchanger regulatory factor (NHERF1). In this study, we investigated the site of RACK1 binding on NHERF1 using solid-phase and solution binding assays and pulldown, immunoprecipitation, and 36Cl efflux experiments. Recombinant RACK1 binding to glutathione S-transferase (GST)-tagged PDZ1 domain of NHERF1 was 10-fold higher than its binding to GST-tagged PDZ2 domain of NHERF1. PDZ1 binds to RACK1 in a dose-dependent manner and vice versa, with similar binding constants of 1.67 and 1.26 µg, respectively. Interaction of the PDZ1 domain with RACK1 was not blocked by binding of activated PKC- to RACK1. A GST-tagged PDZ1 domain pulled down endogenous RACK1 from Calu-3 cell lysate. An internal 11-amino acid motif embedding the GYGF carboxylate binding loop of PDZ1 binds to RACK1, inhibits binding of recombinant NHERF1 and RACK1, pulls down endogenous RACK1 from Calu-3 cell lysate, and blocks coimmunoprecipitation of endogenous RACK1 with endogenous NHERF1 but does not affect cAMP-dependent activation of CFTR. A similar amino acid sequence in the PDZ2 domain did not bind RACK1. Our results indicate binding of Calu-3 RACK1 predominantly to the PDZ1 domain of NHERF1 at a site encompassing the GYGF loop of the PDZ1 domain and a site on RACK1 distinct from a PKC- binding site. CFTR activation by cAMP-generating agent is not affected by loss of RACK1-NHERF1 interaction. cystic fibrosis; cystic fibrosis transmembrane conductance regulator; protein-protein interaction; slot blot assay; pulldown; PDZ domain; chloride efflux; immunoprecipitation  相似文献   

19.
《Cellular signalling》2014,26(1):9-18
RACK1 binds proteins in a constitutive or transient manner and supports signal transmission by engaging in diverse and distinct signalling pathways. The emerging theme is that RACK1 functions as a signalling switch, recruiting proteins to form distinct molecular complexes. In focal adhesions, RACK1 is required for the regulation of FAK activity and for integrating a wide array of cellular signalling events including the integration of growth factor and adhesion signalling pathways. FAK is required for cell adhesion and migration and has a well-established role in neurite outgrowth and in the developing nervous system. However, the mechanism by which FAK activity is regulated in neurons remains unknown. Using neuronal cell lines, we determined that differentiation of these cells promotes an interaction between the scaffolding protein RACK1 and FAK. Disruption of the RACK1/FAK interaction leads to decreased neurite outgrowth suggesting a role for the interaction in neurite extension. We hypothesised that RACK1 recruits proteins to FAK, to regulate FAK activity in neuronal cells. To address this, we immunoprecipitated RACK1 from rat hippocampus and searched for interacting proteins by mass spectrometry. We identified AGAP2 as a novel RACK1-interacting protein. Having confirmed the RACK1–AGAP2 interaction biochemically, we show RACK1–AGAP2 to localise together in the growth cone of differentiated cells, and confirm that these proteins are in complex with FAK. This complex is disrupted when RACK1 expression is suppressed using siRNA or when mutants of RACK1 that do not interact with FAK are expressed in cells. Similarly, suppression of AGAP2 using siRNA leads to increased phosphorylation of FAK and increased cell adhesion resulting in decreased neurite outgrowth. Our results suggest that RACK1 scaffolds AGAP2 to FAK to regulate FAK activity and cell adhesion during the differentiation process.  相似文献   

20.
Covalent modifications of histone tails have fundamental roles in chromatin structure and function. Tri‐methyl modification on lysine 27 of histone H3 (H3K27me3) usually correlates with gene repression that plays important roles in cell lineage commitment and development. Mash1 is a basic helix‐loop‐helix regulatory protein that plays a critical role in neurogenesis, where it expresses as an early marker. In this study, we have shown a decreased H3K27me3 accompanying with an increased demethylase of H3K27me3 (Jmjd3) at the promoter of Mash1 can elicit a dramatically efficient expression of Mash1 in RA‐treated P19 cells. Over‐expression of Jmjd3 in P19 cells also significantly enhances the RA‐induced expression and promoter activity of Mash1. By contrast, the mRNA expression and promoter activity of Mash1 are significantly reduced, when Jmjd3 siRNA or dominant negative mutant of Jmjd3 is introduced into the P19 cells. Chromatin immunoprecipitation assays show that Jmjd3 is efficiently recruited to a proximal upstream region of Mash1 promoter that is overlapped with the specific binding site of Hes1 in RA‐induced cells. Moreover, the association between Jmjd3 and Hes1 is shown in a co‐Immunoprecipitation assay. It is thus likely that Jmjd3 is recruited to the Mash1 promoter via Hes1. Our results suggest that the demethylase activity of Jmjd3 and its mediator Hes1 for Mash1 promoter binding are both required for Jmjd3 enhanced efficient expression of Mash1 gene in the early stage of RA‐induced neuronal differentiation of P19 cells. J. Cell. Biochem. 110: 1457–1463, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号