首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Lily symptomless virus (LSV) and Arabis mosaic virus (ArMV) cause severe losses of quantity and quality of lily flower and bulb production. Specificity, sensitivity and speed of detection methods for viruses need to be improved greatly to prevent LSV and ArMV from spreading from infected lilies. A dual IC‐RT‐PCR procedure for detection was developed in which the antibodies of LSV and ArMV were mixed and the mixture used to coat the PCR tubes. The particles of the two viruses were captured by the respective antibodies. Interference by other RNA viruses in infected lily was eliminated in the RT‐PCR. Also, an RNA extraction step was omitted. The dual IC‐RT‐PCR products of LSV and ArMV were 521 bp and 691 bp, respectively. The specificity of the method was validated; only LSV and ArMV of four viruses were detected by dual IC‐RT‐PCR. The sensitivity of the detection method is 1 mg leaf tissue and higher than DAS‐ELISA due to enrichment by dual immunocapture.  相似文献   

5.
Aims: To develop a highly sensitive and rapid protocol for simultaneous detection and differentiation of Tobacco mosaic virus (TMV) and Tomato mosaic virus (ToMV) in pepper and tomato. In this study, we use the multiplex PCR technique to detect dual infection of these two viruses. Methods and Results: A multiplex RT–PCR method consisting of one‐tube reaction with two primer pairs targeted to replicase genes was developed to simultaneously detect TMV and ToMV in seed samples of pepper and tomato. Specific primers were designed from conserved regions of each of the virus genomes, and their specificity was confirmed by sequencing PCR products. RT–PCR detected up to 10?6 dilution of total RNA extracted from infected leaves. Multiplex RT–PCR revealed the presence of both TMV and ToMV in three of 18 seed samples of tomato and one of 18 seed samples of pepper. Conclusions: The multiplex PCR assay was a cost effective, quick diagnostic technique, which was helpful in differentiating TMV and ToMV accurately. Significance and Impact of the Study: The multiplex PCR assay described in this study is a valuable tool for plant pathology and basic research studies. This method may facilitate better recognition and distinction of TMV and ToMV in both pepper and tomato.  相似文献   

6.
Apple chlorotic leaf spot virus (ACLSV), Apple stem pitting virus (ASPV), Apple stem grooving virus (ASGV) and Apple mosaic virus are economically important viruses infecting fruit tree species worldwide. To evaluate the occurrence of these pome fruit viruses in Latvia, a large‐scale survey was carried out in 2007. Collected samples were tested for infection by DAS ELISA and multiplex RT‐PCR. The accuracy of the detection of the viruses in multiplex RT‐PCR was confirmed by sequencing amplified PCR fragments. The results showed a wide occurrence of viruses in apple and pear commercial orchards established from non‐tested planting material. More than 89% of the tested apple trees and more than 60% of pear trees were infected with one or more pome fruit viruses. Analyses showed that the high occurrence of viruses in several apple cultivars is due to the propagation of infected clonal rootstocks and scions from infected mother trees. Sequence analyses targeting the 3′‐terminal region of the tested viruses showed various degrees of genetic diversity within respective virus isolates. This is the first report of the occurrence of ACLSV, ASGV and ASPV in apple and pear trees in Latvia and demonstrates their genetic diversity in different host genotypes.  相似文献   

7.
8.
During a virus survey in autumn 2007 and spring 2008 of two Tunisian olive mother blocks, 175 olive samples were collected from 19 different cultivars and tested by RT‐PCR for the presence of Arabis mosaic virus (ArMV), Cherry leaf roll virus (CLRV), Cucumber mosaic virus (CMV), Olive latent ringspot virus (OLRSV), Olive latent virus 1 (OLV‐1), Olive latent virus 2 (OLV‐2), Olive leaf yellowing‐associated virus (OLYaV) and Strawberry latent ringspot virus (SLRSV), using specific sets of primers. The PCR‐negative samples were also subjected to dsRNA and mechanical transmission tests. PCR results indicated that c. 86% of the trees were infected with at least one virus, whereas visible bands were shown by 3 of 24 PCR‐negative samples in dsRNA analysis. OLYaV was the most prevalent virus (49.1%), followed by OLV‐1 (34.3%), CMV (25.7%), OLRSV (16.6%), CLRV (13.1%), SLRSV (7.4%) and OLV‐2 (6.9%), whereas ArMV was not detected. Very high infection rates were found in the two main oil cvs. Chemlali (84.6%) and Chétoui (86.9%).  相似文献   

9.
A broad diversity of arthropod‐borne viruses (arboviruses) of global health concern are endemic to East Africa, yet most surveillance efforts are limited to just a few key viral pathogens. Additionally, estimates of arbovirus diversity in the tropics are likely to be underestimated as their discovery has lagged significantly over past decades due to limitations in fast and sensitive arbovirus identification methods. Here, we developed a nearly pan‐arbovirus detection assay that uses high‐resolution melting (HRM) analysis of RT–PCR products from highly multiplexed assays to differentiate broad diversities of arboviruses. We differentiated 15 viral culture controls and seven additional synthetic viral DNA sequence controls, within Flavivirus, Alphavirus, Nairovirus, Phlebovirus, Orthobunyavirus and Thogotovirus genera. Among Bunyamwera, sindbis, dengue and Thogoto virus serial dilutions, detection by multiplex RT–PCR‐HRM was comparable to the gold standard Vero cell plaque assays. We applied our low‐cost method for enhanced broad‐range pathogen surveillance from mosquito samples collected in Kenya and identified diverse insect‐specific viruses, including a new clade in anopheline mosquitoes, and Wesselsbron virus, an arbovirus that can cause viral haemorrhagic fever in humans and has not previously been isolated in Kenya, in Culex spp. and Anopheles coustani mosquitoes. Our findings demonstrate how multiplex RT–PCR‐HRM can identify novel viral diversities and potential disease threats that may not be included in pathogen detection panels of routine surveillance efforts. This approach can be adapted to other pathogens to enhance disease surveillance and pathogen discovery efforts, as well as the study of pathogen diversity and viral evolutionary ecology.  相似文献   

10.
11.
SYBR Green real‐time RT‐PCR assay was developed and optimized for the sensitive detection of Onion yellow dwarf virus (OYDV), Leek yellow stripe virus (LYSV), Garlic common latent virus (GCLV), Shallot latent virus (SLV) and Mite‐borne filamentous virus (MbFV). The polyvalence of the designed primers was tested on 50 genotypes of garlic (Allium sativum L.) which originated from different countries. Plasmid standards were prepared and used as positive standards. The efficiencies of all reactions were 97, 93, 99, 98 and 87% for OYDV, LYSV, SLV, GCLV and MbFV standards, respectively. The detection limit for OYDV, LYSV and GCLV was as low as five gene copies, for SLV it was 15 gene copies and for MbFV it was 130 gene copies. In comparison with ELISA, more virus‐positive garlic accessions were detected with LYSV and GCLV by SYBR Green‐based real‐time RT‐PCR assay. This method was shown to be a more suitable tool for the detection of highly variable pathogens, such as garlic viruses.  相似文献   

12.
13.
Thiopurine prodrugs are antiviral chemicals used in medical therapy whose mechanisms of action are associated with inhibition of purine biosynthesis. In terms of plant chemotherapy, previous research of 6‐mercaptopurine (MP) administration in tobacco tissue culture infected by Tobacco mosaic virus (TMV) showed no inhibition of virus activity. Currently, not enough data exist to confirm thiopurine drug ineffectiveness against viruses in the plant kingdom. This paper presents a screening of MP, 6‐methylmercaptopurine riboside (MMPR), 6‐thioguanine (6‐TG) and 1‐amino‐6‐mercaptopurine (1A‐MP) against TMV and Cucumber mosaic virus (CMV) in in vitro tobacco explants and against Grapevine leafroll‐associated virus 3 (GLRaV 3) in in vitro grapevine explants. ELISA and RT‐PCR were used to evaluate antiviral activity. Higher toxicity levels of MP derivatives, compared to MP, were noted in tobacco and grapevine explants. 1A‐MP or 6‐TG treatment resulted CMV and GLRaV 3 virus‐eradicated explants as obtained with Inosine 5′‐monophosphate dehydrogenase inhibitors, whereas TMV was not eradicated by any of the studied drugs.  相似文献   

14.
15.
16.
In this study, a new multiplex RT‐PCR method for detecting various viral genes in patients with rash and fever illnesses (RFIs ) was constructed. New primer sets were designed for detection of herpes simplex viruses 1 and 2 (HSV1 and 2), and Epstein–Barr virus (EBV). The newly designed and previously reported primer sets were used to detect 13 types of RFI‐associated viruses by multiplex RT‐PCR assay systems. Moreover, to eliminate non‐specific PCR products, a double‐stranded specific DNase was used to digest double‐stranded DNA derived from the templates in clinical specimens. RFI‐associated viruses were detected in 77.0% of the patients (97/126 cases) by the presented method, multiple viruses being identified in 27.8% of the described cases (35/126 cases). Detected viruses and clinical diagnoses were compatible in 32.5% of the patients (41/126 cases). Sensitivity limits for these viruses were estimated to be 101–103 copies/assay. Furthermore, non‐specific PCR products were eliminated by a double‐stranded specific DNase with no influence on sensitivity. These results suggest that this method can detect various RFI‐associated viruses in clinical specimens with high sensitivity and specificity.
  相似文献   

17.
18.
19.
A multiplex nested PCR assay was developed by optimizing reaction components and reaction cycling parameters for simultaneous detection of Corchorus golden mosaic virus (CoGMV) and a phytoplasma (Group 16Sr V‐C) causing little leaf and bunchy top in white jute (Corchorus capsularis). Three sets of specific primers viz. a CoGMV specific (DNA‐A region) primer, a 16S rDNA universal primer pair P1/P7 and nested primer pair R16F2n/R2 for phytoplasmas were used. The concentrations of the PCR components such as primers, MgCl2, Taq DNA polymerase, dNTPs and PCR conditions including annealing temperature and amplification cycles were examined and optimized. Expected fragments of 1 kb (CoGMV), 674 bp (phytoplasma) and 370 bp (nested R16F2n/R2) were successfully amplified by this multiplex nested PCR system ensuring simultaneous, sensitive and specific detection of the phytoplasma and the virus. The multiplex nested PCR provides a sensitive, rapid and low‐cost method for simultaneous detection of jute little leaf phytoplasma and CoGMV. Based on BLASTn analyses, the phytoplasma was found to belong to the Group 16Sr V‐C.

Significance and Impact of the Study

Incidence of phytoplasma diseases is increasing worldwide and particularly in the tropical and subtropical world. Co‐infection of phytoplasma and virus(s) is also common. Therefore, use of single primer PCR in detecting these pathogens would require more time and effort, whereas multiplex PCR involving several pairs of primers saves time and reduces cost. In this study, we have developed a multiplex nested PCR assay that provides more sensitive and specific detection of Corchorus golden mosaic virus (CoGMV) and a phytoplasma in white jute simultaneously. It is the first report of simultaneous detection of CoGMV and a phytoplasma in Corchorus capsularis by multiplex nested PCR.  相似文献   

20.
A survey of grapevine viruses present in the region of Calabria (southern Italy) was carried out, and the sanitary selection was conducted on various indigenous varieties. Serological (ELISA) and molecular (multiplex RT‐PCR) tests were used to detect the viruses included in the Italian certification programme: Arabis mosaic virus (ArMV), Grapevine fanleaf virus (GFLV), Grapevine leafroll associated virus 1 (GLRaV‐1), Grapevine leafroll associated virus 2 (GLRaV‐2), Grapevine leafroll associated virus 3 (GLRaV‐3), Grapevine virus A (GVA), Grapevine virus B (GVB) and Grapevine fleck virus (GFkV). The frequency with which the above viruses have been detected was 37.4, 32.6, 12.8, 7.7, 7.3, 1.9 and 0.3%, respectively, for GVA, GLRaV‐3, GFLV, GFKV, GLRaV‐1, GLRaV‐2 and GVB. ArMV was never found. The sanitary selection allowed for the detection of 6 putative clones of ‘Arvino’, 2 of ‘Magliocco dolce’ and 2 of the rootstock ‘17–37’ free of the above‐mentioned viruses. The necessary process for the commercialization of these clones as ‘certified’ propagation material was accomplished, and their official approval by the Italian Ministry of Agriculture is currently in progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号