首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production of lipase by the newly isolated Pseu-domonas species has been optimised. Various parameters like initial pH, temperature, incubation period, effect of agitation, inoculum age, inoculum concentration were optimised. It was observed that modified GYP media with 72 hrs incubation, pH 5.5, at 37?°C in agitation conditions were optimum for growth and production of lipase. While optimising the effect of some additional carbon and nitrogen sources, 7% (v/v) olive oil concentration, and 1% (w/v) mannose were found to be the best. In between prediction of the activities has been done through computer programming.  相似文献   

2.
Dextran is a long chain polymer of d-glucose produced by different bacterial strains including Leuconostoc, Streptococcus and Acetobacter. The bacterial cells from Leuconostoc mesenteroides KIBGE HA1 were immobilized on calcium alginate for dextran production. It was observed that dextran production increases as the temperature increases and after reaching maxima (30 °C) production started to decline. It was also observed that at 50 °C free cells stopped producing dextran, while immobilized cells continued to produce dextran even after 60 °C and still not exhausted. It was found that when 10 g% substrate (sucrose) was used, maximum dextran production was observed. Immobilized cells produced dextran upto 12 days while free cells stopped producing dextran only after 03 days. Molecular mass distribution of dextran produced by immobilized cells is low as compared to free cells.  相似文献   

3.
On the basis of high enzyme activity a newly isolated strain of L. mesenteroides CMG713 was selected for dextran production. For maximum yield of dextran, effects of various parameters such as pH, temperature, sucrose concentration and incubation period were studied. L. mesenteroides CMG713 produced maximum dextran after 20 hours of incubation at 30 masculineC with 15% sucrose at pH 7.0. The molecular mass distribution of dextran produced by this strain showed that its molecular mass was about 2.0 million Da. Dextran analysis by (13)C-NMR spectrometry showed no signals corresponding to any other linkages except alpha-(1-->6) glycosidic linkage in the main chain, which has not been reported before. Physico-chemical properties of this unique dextran were also studied. These optimised conditions could be used for the commercial production of this unique high molecular weight dextran, which have significant industrial perspectives.  相似文献   

4.
Synthesis of amylase by Aspergillus niger strain UO-01 under solid-state fermentation with sugarcane bagasse was optimized by using response surface methodology and empirical modelling. The process parameters tested were particle size of sugarcane bagasse, incubation temperature and pH, moisture level of solid support material and the concentrations of inoculum, total sugars, nitrogen and phosphorous. The optimum conditions for high amylase production (457.82 EU/g of dry support) were particle size of bagasse in the range of 6–8 mm, incubation temperature and pH: 30.2°C and 6.0, moisture content of bagasse: 75.3%, inoculum concentration: 1 × 107 spores/g of dry support and concentrations of starch, yeast extract and KH2PO4: 70.5, 11.59 and 9.83 mg/g of dry support, respectively. After optimization, enzyme production was assayed at the optimized conditions. The results obtained corroborate the effectiveness and reliability of the empirical models obtained.  相似文献   

5.
6.
A sequential optimization based on statistical design and one-factor-at-a-time (OFAT) method was employed to optimize the media constituents for the improvement of citric acid production from oil palm empty fruit bunches (EFB) through solid state bioconversion using Aspergillus niger IBO-103MNB. The results obtained from the Plackett–Burman design indicated that the co-substrate (sucrose), stimulator (methanol) and minerals (Zn, Cu, Mn and Mg) were found to be the major factors for further optimization. Based on the OFAT method, the selected medium constituents and inoculum concentration were optimized by the central composite design (CCD) under the response surface methodology (RSM). The statistical analysis showed that the optimum media containing 6.4% (w/w) of sucrose, 9% (v/w) of minerals and 15.5% (v/w) of inoculum gave the maximum production of citric acid (337.94 g/kg of dry EFB). The analysis showed that sucrose (p < 0.0011) and mineral solution (p < 0.0061) were more significant compared to inoculum concentration (p < 0.0127) for the citric acid production.  相似文献   

7.
The industrial Leuconostoc strain B/110-1-2 producing dextran and dextran derivatives was taxonomically identified by 16S rRNA as L. citreum. Its dextransucrase enzymes were characterized according to their cellular location and reaction specificity. In the presence of sucrose, the strain B/110-1-2 produced two cell-associated dextransucrases (31.54% of the total glucosyltransferase activity) with molecular weights of 160 and 240 kDa and a soluble dextransucrase (68.46%) at 160–180 kDa. Two open reading frames (ORF) coding for L. citreum strain B/110-1-2 dextransucrases were identified. One of them shared a 52% identity with the alternansucrase ASR of L. citreum NRRL B-1355 and with a putative annotated alternansucrase sequence found in the genome of L. citreum KM20. The structural analysis (HPAEC-PAD, HPSEC, and 13C-NMR) of the polymer and oligodextrans produced by the B/110-1-2 dextransucrases suggest this novel glucansucrase has specificity similar to a dextransucrase but not to an alternansucrase, producing a soluble linear dextran with glucose molecules linked mainly in α-1,6 and α-1,3 with α-1,4 branches. These results enhance the understanding of this industrially significant strain and will aid in distinguishing between physiologically similar Leuconostoc spp. strains.  相似文献   

8.
Characterization of Leuconostoc oenos Isolated from Oregon Wines   总被引:4,自引:2,他引:2       下载免费PDF全文
This study was designed to characterize isolates of Leuconostoc species from Oregon wines. Gram-positive cocci were isolated, and their biochemical properties and abilities to decompose malic acid were determined. All of the isolates were heterofermentative, catalase negative, and facultatively anaerobic and occurred in pairs and chains. They produced acid from glucose, fructose, mannose, ribose, cellobiose, trehalose, and salicin but not from sucrose or lactose. They did not produce ammonia from arginine or dextran from sucrose. They grew at pH values of less than 4 and in 10% ethanol. Most but not all strains produced lactic acid and carbon dioxide from malic acid, as determined by paper chromatography and respirometry, respectively. These malolactic bacteria were considered to be strains of Leuconostoc oenos. We compared these isolates with reference strains for relative growth at pH values of 4.0, 3.5, 3.0, and 2.8 at 22°C. The isolates were similar in their growth responses at the two highest pH levels. At pH 3.0 and 2.8, however, the strains failed to grow but revealed variable abilities to dissimilate malic acid.  相似文献   

9.
The batch production of gluconic acid in the presence of glucose, sucrose and molasses was investigated using free mycelia of Aspergillus foetidus NRRL 337 in shake flasks. Eight growth parameters were chosen as independent variables. The temperature, pH, substrate type and initial concentrations, inoculum percentage and shake rate directly affected the specific microorganism growth and gluconic acid production rates. The optimum temperature and initial pH values were found to be 33°C and five to six, respectively. The maximum specific growth and gluconic acid production rates were established as 57 g/dm3 of glucose, 75 g/dm3 of sucrose and 150 g/dm3 of molasses. The optimum values of the shake rate, inoculum percentage and initial ammonium nitrate concentration were determined as 100 1/min, 0.5% and 1.5 g/dm3, respectively. The maximum gluconic acid concentrations corresponding to these initial substrate concentrations were observed to be 8.3 g/dm3, 17.4 g/dm3 37.0 g/dm3, respectively. The optimum specific microbial growth and gluconic acid production rates were found as 0.0145 1/h and 0.0375 g/g × h, respectively, for the fermentation conditions of SGo = 57 g/dm3, T = 28°C, initial pH = 6.5, N = 84 1/min, A = 0.5 g/dm3 and I = 0.5%.  相似文献   

10.
Fructophilic strains of Leuconostoc spp. have recently been reclassified to a new genus, i.e., Fructobacillus. Members of the genus are differentiated from Leuconostoc spp. by their preference for fructose on growth, requirement of an electron acceptor for glucose metabolism, and the inability to produce ethanol from the fermentation of glucose. In the present study, enzyme activities and genes involved in ethanol production were studied, since this is the key pathway for NAD+/NADH cycling in heterofermentative lactic acid bacteria. Fructobacillus spp. has a weak alcohol dehydrogenase activity and has no acetaldehyde dehydrogenase activity, whereas both enzymes are active in Leuconostoc mesenteroides. The bifunctional alcohol/acetaldehyde dehydrogenase gene, adhE, was described in Leuconostoc spp., but not in Fructobacillus spp. These results suggested that, due to the deficiency of the adhE gene, the normal pathway for ethanol production is absent in Fructobacillus spp. This leads to a shortage of NAD+, and the requirement for an electron acceptor in glucose metabolism. Fructophilic characteristics, as observed for Fructobacillus spp., are thus due to the absence of the adhE gene, and a phenotype that most likely evolved as a result of regressive evolution.  相似文献   

11.
Streptococcus mutans Ingbritt (serotype c) was found to secrete basic glucosyltranserase (sucrose: 1,6-α-D-glucan 3-α- and 6-α- glucosyltransferase). The enzyme preparation obtained by ethanol fractionation, DEAE Bio-Gel A chromatography, chromatofocusing and preparative isoelectric focusing was composed of three isozymes with slightly different isoelectric points (pI 8.1–8.4). The molecular weight was estimated to be 151 000 by SDS-polyacrylamide gel electrophoresis. The specific activity of the enzyme was 9.8 IU per mg of protein and the optimum pH was 6.5. The enzyme was activated 2.4-fold by commercial dextran T10, and had Km values of 7.1 μM for the dextran and 4.3 mM for sucrose. Glucan was de novo synthesized from sucrose by the enzyme and found to be 1,6- α-D-glucan with 17.7% of 1,3,6-branching structure by a gas-liquid chromatography-mass spectroscopy.  相似文献   

12.
The bacterium with an ability to produce extracellular fibrinolytic protease was isolated and identified as Stenotrophomonas maltophilia Gd2 based on ribotyping. The in-vitro fibrinolytic profile of this enzyme depicted 73% of fibrin clot dissolution within 4 h. Fibrinolytic enzyme yield influenced by different physiological (incubation time, temperature, agitation and pH), nutritional (macronutrients such as carbon and nitrogen sources) and biological (inoculums age and inoculums concentration) parameters of fermentation which were optimized based on one-factor-at-a-time (OFAT) approach. The enzyme yield improved from 886 to 1795 FU ml−1 upon OFAT; optimized conditions include temperature – 33 °C, pH – 8.0, incubation time – 36 h, agitation – 150 RPM, 3% v/v inoculums and age of inoculum – 18 h. Further optimization of enzyme production was achieved with implementation of Plackett-Burman media designing where the production levels increased to 3411 FU ml−1 and noticed that peptone, pH, dextrose and K2HPO4 was found to be significant factor. This ms reports the highest fibrinolytic enzyme yield with S. maltophilia to that of literature reports.  相似文献   

13.
Studies on protoplast isolation were carried out with mature pollen grains of Tulbaghia violacea Harv. (Liliaceae). Pollen grains drifted from surface sterilized crushed anthers were incubated either in a nonenzymatic solution composed of Nitsch medium and sucrose, or in the same solution supplemented with 1% cellulase Onozuka R-10 and 1% Macerozyme R-10. The process of protoplast release was studied as a function of pH and sucrose concentration of nonenzymatic and enzymatic solutions. For nonenzymatic isolation, the tested range of pH and sucrose concentration was from 3.3 to 13.1 and from 0.015 to 1.12 M (final solution osmolality from 200 to 1,300 mOs kg-1 H2O), respectively. In the former case, the release of protoplasts occurred only at nonphysiological pH (12.2 to 13.1) and could be observed after several seconds to 120 min, depending on pH and sucrose concentration of medium. Under enzymatic incubation, viable protoplasts were released more rapidly (3 to 35 min) and in more physiological conditions, the optimum being pH 5.8 and final medium osmolality 652 mOs kg-1 H2O. Speed, manner of protoplast release, number and quality of protoplasts were dependent on interactions of pH and sucrose concentration.  相似文献   

14.
The bioactive compound, bacoside A, has immense importance for the treatment of memory disorders and Alzheimer’s disease. Due to the growing commercial interest in the herb, Bacopa monnieri, it has been listed as highly endangered species. The present study was aimed at enhancing the production of bacoside A using an alternative technology of plant cell suspension culture. Initial experiments of docking simulations using bacoside A showed good inhibition of acetyl cholinesterase (binding energy value of ??20 kcal/mol), when comparison was made with other phytocompounds and the synthetic drug for Alzheimer’s disease. In vitro experiments established that B. monnieri cell suspension culture can be developed in Murashige and Skoog medium containing containing 0.1 mg/L benzylaminopurine and 0.5 mg/L naphthalene acetic acid. Plackett–Burman studies predicted that the most effective factors for maximum biomass production were inoculum size (t-value of 4.87), sucrose concentration (t-value of 0.25) and KH2PO4 concentration (t-value of 0.007). The nitrate to ammonium ratio (t-value of ? 0.42) did not have significant effect on the cell suspension biomass. The optimum concentration of the crucial variables obtained from a central composite design were—inoculum size of 2 g/L, sucrose concentration of 30 g/L and KH2PO4 concentration of 1.24 mM in one-sixth strength MS medium. The best model for optimum production of biomass and bacoside A was experimentally verified and the correlation between the predicted and actual values was found to be 99% for biomass and 94% for bacoside A production. The experimental results have been discussed in the present work.  相似文献   

15.
Cephalosporium acremonium was cultivated in fermentation medium containing sucrose or methyl oleate as a carbon source for cephalosporin C production. The level of antibiotic production was 48 g of cephalosporin C per liter under optimum conditions when methyl oleate was used. The C18:1 (oleic acid) methyl ester appeared to be utilized faster than the C18:2 (linoleic acid) methyl ester in fermentation broth. Physiological characteristics of C. acremonium were investigated by determining the fatty acid composition of the total cellular free lipid. Significant changes in cellular fatty acid composition occurred during inoculum cultivation and fermentation. The percentage of C18:1 increased from 19.1 to 38.5%, but the percentage of C18:2 decreased from 56.7 to 36.1%, and there was an increase in pH during inoculum cultivation. The cellular fatty acid composition of C. acremonium grown in fermentation medium containing methyl oleate (methyl oleate medium) was significantly different from that in fermentation medium containing sucrose (sucrose medium). The major fatty acids detected were C16:0 (palmitic acid), C18:1, and C18:2. In methyl oleate medium, the ratio of C18:1 to C18:2 increased from 0.34 to 1.37, while the cell morphology changed from hyphae to arthrospores and conidia. In contrast, in sucrose medium, the ratio of C18:1 to C18:2 decreased from 0.70 to 0.43, and most of the cells remained hyphal at the end of fermentation. We observed that hyphae contained a higher proportion of C18:2 but arthrospores and conidia contained a higher proportion of C18:1.  相似文献   

16.
Antimicrobial proteinaceous compounds such as bacteriocins produced from Lactobacillus sp. are widely known. They have potential antimicrobial activities towards closely related bacteria and several pathogens associated with food spoilage and hence can be a potential food bio-preservative agent. Bacteriocin production requires optimized process, complex media and well-controlled physical conditions including pH and temperature. A probiotic strain of L. casei LA-1 isolated from mango pickle was used in the present study. The influence of physical parameters viz. temperature (15 ?? 45°C), pH (4.0 ?? 7.0), incubation time (up to 48 h) and inoculum size (0.7 ?? 2.0 O.D) on bacteriocin production was analyzed. The effect of all the parameters was first investigated using the one-factor-at-a-time method (OFAT) to see the significance of these parameters on bacteriocin production and then further optimized by response surface methodology (RSM). Following OFAT analysis, all factors were found to have a significant effect on bacteriocin production. Bacteriocin production of 2,844 AU/mL was obtained at temperature 37°C, pH 6.7 and inoculum size 1.8 O.D at an incubation time of 20 h and it was produced during the stationary phase of growth. Statistical analysis showed that three variables-pH, temperature and incubation time have significant effects on bacteriocin production. RSM proved to be a powerful tool in the optimization of bacteriocin production by L. casei LA-1 with a two-fold increase, giving a production of 4652.15 AU/mL at pH 7.19, temperature 33.3°C and incubation time of 22.2 h.  相似文献   

17.
18.
Whey permeate (WP) was used efficiently for production of mosquitocidal toxin by Bacillus sphaericus 2362 (B. sphaericus 2362) and the Egyptian isolate, B. sphaericus 14N1 (B. sphaericus 14N1) under both submerged and solid state fermentation conditions. Under submerged fermentation, high mosquitocidal activity was produced by B. sphaericus 2362 and B. sphaericus 14N1 at 50-100% and 25-70% WP, respectively. Initial pH of WP was a critical factor for toxin production by both tested organisms. The highest toxicity was obtained at initial pH 7. Egyptian isolate, B. sphaericus 14N1 was tested for growth and toxin production under solid state fermentation conditions (SSF) by using WP as moistening agent instead of distilled water. The optimum conditions for production of B. sphaericus 14N1 on wheat bran-WP medium were 10 g wheat bran/250 ml flask moistened with 10-70% WP at 50% moisture content, inoculum size ranged between 17.2 × 107 and 34.4 × 107 and 6 days incubation under static conditions at 30 °C. Preliminary pilot-scale production of B. sphaericus 14N1 under SSF conditions in trays proved that wheat bran-WP medium was efficient and economic for industrial production of mosquitocidal toxin by B. sphaericus.  相似文献   

19.
The process parameters were optimized to obtain enhanced enzyme activity from the fungus Phoma herbarum isolate KU4 using rice straw and saw dust as substrate under solid-state fermentation using Response surface methodology (RSM). Genetic algorithm was used to validate the RSM for maximum laccase production. Six variables, viz., pH of the media, initial moisture content, copper sulphate concentration, concentration of tannic acid, inoculum concentration and incubation time were found to be effective and optimized for enhanced production. Maximum laccase production was achieved by RSM at pH 5·0 and 86% of initial moisture content of the culture medium, 150 µmol l−1 of CuSO4, 1·5% tannic acid and 0·128 g inoculum g−1 dry substrate inoculum size on the fourth day of fermentation. The highest laccase activity was observed as 79 008 U g−1, which is approximately sixfold enhanced production compared to the unoptimized condition (12 085·26 U g−1).  相似文献   

20.
Central composite design was chosen to determine the combined effects of four process variables (AgNO3 concentration, incubation period, pH level and inoculum size) on the extracellular biosynthesis of silver nanoparticles (AgNPs) by Streptomyces viridochromogenes. Statistical analysis of the results showed that incubation period, initial pH level and inoculum size had significant effects (P<0.05) on the biosynthesis of silver nanoparticles at their individual level. The maximum biosynthesis of silver nanoparticles was achieved at a concentration of 0.5% (v/v) of 1 mM AgNO3, incubation period of 96 h, initial pH of 9 and inoculum size of 2% (v/v). After optimization, the biosynthesis of silver nanoparticles was improved by approximately 5-fold as compared to that of the unoptimized conditions. The synthetic process of silver nanoparticle generation using the reduction of aqueous Ag+ ion by the culture supernatants of S. viridochromogenes was quite fast, and silver nanoparticles were formed immediately by the addition of AgNO3 solution (1 mM) to the cell-free supernatant. Initial characterization of silver nanoparticles was performed by visual observation of color change from yellow to intense brown color. UV-visible spectrophotometry for measuring surface plasmon resonance showed a single absorption peak at 400 nm, which confirmed the presence of silver nanoparticles. Fourier Transform Infrared Spectroscopy analysis provided evidence for proteins as possible reducing and capping agents for stabilizing the nanoparticles. Transmission Electron Microscopy revealed the extracellular formation of spherical silver nanoparticles in the size range of 2.15–7.27 nm. Compared to the cell-free supernatant, the biosynthesized AgNPs revealed superior antimicrobial activity against Gram-negative, Gram-positive bacterial strains and Candida albicans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号