首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The morphological aspects of the binding and internalization of low density lipoproteins (LDL) and acetylated low density lipoproteins (AcLDL) by cultured human monocyte-derived macrophages were investigated. For this purpose, LDL and AcLDL were conjugated to 20 nm colloidal gold particles. After incubation of the cells with the conjugated lipoproteins at 4 degrees C some LDL- or AcLDL-gold complexes were found to be attached to the cell surface, but without characteristic localization. However, after incubation of the cells at 8 degrees C with either LDL-gold or AcLDL-gold, lipoprotein-gold complexes were present in clusters on the plasma membrane, often in coated pits. Cells incubated at 37 degrees C for various time periods showed internalization of both LDL- and AcLDL-gold complexes via small coated and non-coated vesicles and processing of the complexes in smooth-walled endosomes. When the cells were pulse-chased with LDL- or AcLDL-gold for 30 min at 37 degrees C, the gold conjugates occurred in dense bodies, probably lysosomes. The results suggest that although native and modified LDL are reported to be metabolized differently by macrophages, the morphological aspects of the endocytosis of LDL and AcLDL by cultured human monocyte-derived macrophages are similar.  相似文献   

2.
Summary The morphological aspects of the binding and internalization of low density lipoproteins (LDL) and acetylated low density lipoproteins (AcLDL) by cultured human monocyte-derived macrophages were investigated. For this purpose, LDL and AcLDL were conjugated to 20 nm colloidal gold particles. After incubation of the cells with the conjugated lipoproteins at 4° C some LDL-or AcLDL-gold complexes were found to be attached to the cell surface, but without characteristic localization. However, after incubation of the cells at 8° C with either LDL-gold or AcLDL-gold, lipoprotein-gold complexes were present in clusters on the plasma membrane, often in coated pits. Cells incubated at 37° C for various time periods showed internalization of both LDL- and AcLDL-gold complexes via small coated and non-coated vesicles and processing of the complexes in smooth-walled endosomes. When the cells were pulse-chased with LDL- or AcLDL-gold for 30 min at 37° C, the gold conjugates occurred in dense bodies, probably lysosomes. The results suggest that although native and modified LDL are reported to be metabolized differently by macrophages, the morphological aspects of the endocytosis of LDL and AcLDL by cultured human monocyte-derived macrophages are similar.  相似文献   

3.
We have previously shown that multiple complement (C) channels are required for lysis of a nucleated cell in contrast to the single channel requirement for erythrocytes. To further investigate this multichannel requirement for nucleated cells, we examined the stability of terminal C complexes in the plasma membrane of Ehrlich ascites tumor cells. Ehrlich cells bearing C5b-7 or C5b-8 with or without C9 were incubated at 37 degrees C or 0 degree C for various time intervals before converting the remaining complexes to lytic C5b-9 channels. C5b-7, C5b-8, and C5b-8 in the presence of a limited number of C5b-9 complexes disappeared functionally from the plasma membrane at 37 degrees C, with initial half-lives of 31, 20, and 10 min, respectively. Disappearance of these complexes did not occur at 0 degree C, nor did disappearance occur at 37 degrees C when formed on sheep erythrocytes. The fate of C5b-8 complexes on the surface of Ehrlich cells was traced with colloidal gold particles bound to C5 determinants on C5b-8 with the use of immunoelectron microscopy. Colloidal gold could be seen on the cell surface after specific binding to cells carrying C5b-8 sites at 0 degree C. After incubating these cells at 37 degrees C, gold particles were internalized into the cell continuously via endocytic vesicles. It is postulated that terminal C complexes may stimulate or accelerate the removal of these complexes from the cell surface.  相似文献   

4.
Low density lipoproteins (LDL) were conjugated to colloidal gold to visualize the route for internalization of LDL in the cultured cells of human term placenta. Cells were obtained from placental villi (caesarian section) by a standard trypsin-DNase dispersion method followed in some cases by a Percoll gradient centrifugation step. Employing electron microscopy it was observed that after 3 days of culture, cells obtained by trypsin-DNase dispersion were a mixture of macrophages, mononucleated cells and large multinucleated cells. When the cells were incubated for 3 days after the Percoll purification, essentially multinucleated cells identical to the syncytiotrophoblast were present. The number of LDL receptor was increased by preincubation in medium with lipoprotein depleted serum. In binding experiments cells incubated at 4 degrees C for 2 h with medium containing gold LDL conjugates showed gold LDL attached to the plasma membrane without characteristic localization. After incubation with gold LDL at 37 degrees C for various times, the three cellular types showed ligand internalization. Gold LDL endocytosis involved first coated pits but also uncoated plasmalemmal invaginations. Then gold LDL was further observed in coated and non coated vesicles, smooth walled endosomes, multivesicular bodies and tubular vesicles. Lastly free gold particles were observed in lysosome like dense bodies. These results prove the internalization of gold LDL conjugates by human cultured placental cells, particularly by syncytiotrophoblast like multinucleated cells. This accumulation of LDL (the major cholesterol carrying protein in humans) is recognised to be responsible for the exogenous cholesterol supply indispensable to the progesterone biosynthesis and cellular growth of the placenta.  相似文献   

5.
Morphological and biochemical studies on low density lipoprotein (LDL) receptor metabolism were performed in squamous carcinoma cells (SCC-15 and SCC-12F2). Modulation of terminal differentiation was achieved by culturing these cells at different cell densities. Studies on these cells cultured at low density (hardly any terminal differentiation) showed the following results: High affinity binding of LDL was excessive; LDL binding to SCC-15 cells was twice as high as that in SCC-12F2 cells and in fibroblasts. The distribution of the LDL binding visualized by LDL receptor antibodies was non-linear. There was no contact inhibition of LDL binding. LDL-gold particles were mainly bound to the plasma membrane outside coated pits. LDL-gold particles were internalized and delivered to dense bodies (= lysosomes). Degradation of LDL took place after a lag period of 10 min. Dissociation of LDL from the plasma membrane was substantial (more than 40% after a 120 min chase period). The same experiments on the cells cultured at high density (terminal differentiation present) showed several differences: A sharp decrease in high affinity LDL binding in both cell types. The internalization of surface bound LDL was defective in most of the squamous carcinoma cells. Dissociation of LDL from the plasma membrane was substantial, and after a chase period of 120 min at 37 degrees C still more than 20% of LDL remained intracellular and was not degraded. We postulate that LDL receptor-mediated endocytosis and degradation take place in squamous carcinoma cells but that during the process of terminal differentiation modulation of LDL-receptor metabolism occurs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Summary Low density lipoproteins (LDL) were conjugated to colloidal gold to visualize the route for internalization of LDL in the cultured cells of human term placenta. Cells were obtained from placental villi (caesarian section) by a standard trypsin-DNase dispersion method followed in some cases by a Percoll gradient centrifugation step. Employing electron microscopy it was observed that after 3 days of culture, cells obtained by trypsin-DNAse dispersion were a mixture of macrophages, mononucleated cells and large multinucleated cells. When the cells were incubated for 3 days after the Percoll purification, essentially multinucleated cells identical to the syncytiotrophoblast were present. The number of LDL receptor was increased by preincubation in medium with lipoprotein depleted serum. In binding experiments cells incubated at 4° C for 2 h with medium containing gold LDL conjugates showed gold LDL attached to the plasma membrane without characteristic localization. After incubation with gold LDL at 37° C for various times, the three cellular types showed ligand internalization. Gold LDL endocytosis involved first coated pits but also uncoated plasmalemmal invaginations. Then gold LDL was further observed in coated and non coated vesicles, smooth walled endosomes, multivesicular bodies and tubular vesicles. Lastly free gold particles were observed in lysosome like dense bodies. These results prove the internalization of gold LDL conjugates by human cultured placental cells, particularly by syncytiotrophoblast like multinucleated cells. This accumulation of LDL (the major cholesterol carrying protein in humans) is recognised to be responsable for the exogenous cholesterol supply indispensable to the progesterone biosynthesis and cellular growth of the placenta.  相似文献   

7.
Endocytosis of immunoglobulin G (IgG)-coated colloidal gold particles in cultured mouse peritoneal macrophages was studied by scanning and transmission electron microscopy. At 4 degrees C, the tracers adhered to the plasma membrane and accumulated in coated pits located in the bottom of furrows or deep invaginations on the cell surface. In the presence of an excess of unlabeled mouse IgG, cellular binding of the tracer was reduced by 80 to 90%. After warming to 37 degrees C, surface-bound tracer particles were rapidly ingested and transported to small and large vesicles lacking membrane coat. From here, they were then passed over to multivesicular bodies and lysosomes characterized by their content of myelin-like figures and other inclusions. Double-labeling experiments with IgG-coated colloidal gold particles of two different sizes (20 and 5 nm diameter) indicated that the plasma membrane was depleted of binding sites after uptake of a polyvalent ligand. The restoration of the binding capacity was a slow process requiring ongoing protein synthesis. On the basis of these observations, a model for endocytosis of immune complexes in macrophages is presented. It includes the following four steps: IgG-containing macromolecular aggregates bind to specific receptors in the plasma membrane. These appear to be preclustered in coated pits or able to move laterally within the membrane even at 4 degrees C. The receptor-ligand complexes are internalized and transferred sequentially to larger uncoated vesicles or endosomes, multivesicular bodies, and lysosomes with inclusions of varying appearance. Receptors and ligands are degraded within the lysosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Morphological characteristics of the interaction of low density lipoproteins (LDL) and acetylated low density lipoproteins (AcLDL) with rat liver cells are described. These liver cell types are mainly responsible for the catabolism of these lipoproteins in vivo. Isolated rat liver Kupffer, endothelial, and parenchymal cells were incubated with LDL or AcLDL conjugated to 20 nm colloidal gold. LDL was mainly internalized by Kupffer cells, whereas AcLDL was predominantly found in endothelial cells. Kupffer and endothelial cells displayed different morphological characteristics in the processing of these lipoproteins. Kupffer cells bound LDL at uncoated regions of the plasma membrane often at the base of pseudopodia, and internalized the particles via small smooth vesicles. These uptake characteristics differ from the classical LDL uptake pathway, as described for other cell types, and may be related to the unique recognition properties of the receptor of Kupffer cells as observed in biochemical studies. Liver endothelial cells bound AcLDL in coated pits, followed by rapid uptake. Uptake proceeded through small coated vesicles, and after 5 min of incubation large (600-1200 nm) electron-lucent vacuoles (endosomes) with AcLDL-gold particles arranged along the membrane region were present. The endosomes were often associated closely with the cell membrane which might enable direct recycling of AcLDL receptors. These observations might explain the high efficiency of these cells in the processing of modified LDL in vivo.  相似文献   

9.
The topography and dynamics of IgA-secretory component (SC) complexes on the surface of cultured hepatocytes and its disturbance by cytochalasin B were investigated using the colloidal gold technique in conjunction with surface replication. The distribution of IgA-gold conjugates after incubation at 4 degrees C was similar in normal and cytochalasin B-treated hepatocytes and was characterized by diffusely scattered single and clustered particles, the latter often associated with coated pits. After raising the temperature to 37 degrees C, redistribution of particles and their gradual uptake into coated vesicles was observed in control cultures. This ligand-induced redistribution led to a progressive gathering of single and grouped particles in larger clusters (50-200 particles), which appeared to be the site of the most intensive endocytotic activity. In contrast, huge patches of IgA-gold conjugates were formed at the cell periphery of cytochalasin B-treated hepatocytes within 20-60 min at 37 degrees C, while central areas were cleared. Patch formation was triggered by binding of both unlabeled and labeled IgA, but could not be observed with the unoccupied receptor as demonstrated by gold-labeled antibodies against SC. These results show that the topography of SC is markedly changed by binding of its ligand, IgA, and suggest that the dynamics of the IgA-SC complexes in hepatocyte plasma membrane are affected by microfilaments.  相似文献   

10.
125I-labeled and ferritin-labeled low density lipoprotein (LDL) were used as visual probes to study the surface distribution of LDL receptors and to examine the mechanism of the endocytosis of this lipoprotein in cultured human fibrobasts. Light microscopic autoradiograms of whole cells incubated with 125I-LDL at 4 degrees C showed that LDL receptors were widely but unevenly distributed over the cell surface. With the electron microscope, we determined that 60-70% of the ferritin-labeled LDL that bound to cells at 4 degrees C was localized over short coated segments of the plasma membrane that accounted for no more than 2% of the total surface area. To study the internalization process, cells were first allowed to bind ferritin-labeled LDL at 4 degrees C and were then warmed to 37 degrees C. Within 10 min, nearly all the surface-bound LDL-ferritin was incorporated into coated endocytic vesicles that were formed by the invagination and pinching-off of the coated membrane regions that contained the receptor-bound LDL. With increasing time at 37 degrees C, these coated vesicles were observed sequentially to migrate through the cytoplasm (1 min), to lose their cytoplasmic coat (2 min), and to fuse with either primary or secondary lysosomes (6 min). The current data indicate that the coated regions of plasma membrane are specialized structures of rapid turnover that function to carry receptor-bound LDL, and perhaps other receptor-bound molecules, into the cell.  相似文献   

11.
The localization of thrombin receptors on mouse embryo (ME) cells was examined using electron microscope (EM) immunocytological techniques. ME cells were fixed with formaldehyde, prior to thrombin binding, and thrombin visualized on cell surfaces using affinity-purified antithrombin rabbit antibody and colloidal gold labeled anti-rabbit IgG. Colloidal gold particles were found in clusters on the surface of cells incubated with thrombin. There were approximately seven particles per cluster observed in thin sections with cluster diameters ranging from 70 to 200 nm. These clusters were not observed on cells incubated without thrombin. The total number of particles present on cells incubated with and without thrombin indicate that the colloidal gold labeling is approximately 98% specific for thrombin. Only four colloidal gold particles out of approximately 1,200 were associated with coated pits. Thus the thrombin receptor clusters do not appear to associate with coated membrane regions. To determine whether receptor-bound thrombin was internalized by receptor-mediated endocytosis, ME cells were incubated with 125I-thrombin and examined using EM autoradiography and the trypsin sensitivity of 125I-thrombin which was associated with the cells. In two types of experiments, where thrombin was incubated with cells at 4 degrees C and the temperature increased to 37 degrees C and where initial incubation was at 37 degrees C, the receptor-directed specific internalization proceeded at approximately the same rate as nonspecific internalization. These studies indicate that thrombin that binds to its receptors on ME cells is not rapidly internalized by receptor-mediated endocytosis.  相似文献   

12.
After in vitro incubation of Xenopus oocytes with vitellogenin (VTG)-gold conjugate, the gold particles are distributed on the whole plasma membrane. Their concentration in coated pits still occurs at 0 degrees C. At +20 degrees C the label quickly (30 sec) appears in multi-vesicular endosomes (MVE) which segregate together with primary endocytic vesicles into distinct clusters below the plasma membrane. From this step up to crystallization of the yolk platelets, the gold particles stay in the same compartment. During 5.5 h the label progressively increases along the MVE membrane, first (1.5 h) by fusion of primary endocytic vesicles with consecutively enlarging endosomes, then (4 h) by decreasing of the MVE membrane. As concerns the yolk platelet formation, concentration of primordial yolk platelets (PYP) occurs at 5.5 h from the incubation onset, the labeling of preexisting yolk platelets starts at 7 h, while crystallization of PYP begins only after 12-13 h. Our results indicate that VTG receptors are not preclustered in coated pits and their lateral translation is not inhibited at 0 degrees C. The yolk protein processing takes place within one compartment only. The VTG condensation begins with a long concentration phase of receptor-VTG complexes still integrated in the endosome membrane. It occurs in MVE by: i) a repeated fusion of primary endocytic vesicles; ii) removing part of the endosome membrane by internal vesiculation. Fusion between endosomes occurs only after VTG has dissociated from its receptors and VTG dissociates only when when the density of the VTG-receptor complexes in the endosome membrane is sufficient. Crystallization begins after a 7-8 h delay. The endosome migration into the oocyte is also controlled by the binding of VTG to its receptors. Our results also demonstrate that binding of VTG colloidal gold modifies neither the vitellogenic pathway nor the duration of the vitellogenin internalization. However when vitellogenin is bound to colloidal gold, dissociation of ligand-receptor complexes is delayed because the amount of ligand in the incubation medium is necessarily low.  相似文献   

13.
By investigating the presence and distribution of GalNAc/Gal-specific receptors on liver cells in vitro and in vivo, we provided evidence that the hepatocyte is not the only liver cell expressing receptor activity but that receptors of similar specificity are found on liver macrophages and also on endothelial cells. The receptor distribution in the plasma membrane is strinkingly different between the three cell types, as judged from the binding pattern of colloidal gold particles coated with asialofetuin or lactosylated serum albumin. Binding to hepatocytes occurs as single particles statistically distributed, binding to liver macrophages in a clustered arrangement all over the cell membrane and binding to endothelial cells also in a clustered arrangement but restricted to coated pits only. The different receptor distribution results in different binding and uptake abilities. Whereas hepatocytes bind and take up molecules and small particles (5 nm) only, the clustered receptor arrangement of endothelial cells and macrophages enables them to effectively bind and ingest larger particles. Ligands larger than 35 nm can be taken up by the macrophages only. The different receptor arrangement results also in different capacities of cell contact formation. Although in vitro liver macrophages and hepatocytes can both bind desialylated cells the macrophage needs much less galactosyl groups exposed on erythrocytes to establish stable contacts than the hepatocyte. The contacts formed by hepatocytes stay reversible for 30 min at 37 degrees C, whereas the contacts formed by the liver macrophages become irreversible after 10 min at 37 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The participation of cell surface anionic sites on the interaction between tachyzoites of Toxoplasma gondii and macrophages and the process of phagosome-lysosome fusion were analyzed using cationized ferritin as a marker of cell surface anionic sites and albumin-colloidal gold as a marker for secondary lysosomes. Incubation of either the macrophages or the parasites with cationized ferritin before the interaction increased the ingestion of parasites by macrophages. Anionic sites of the macrophage's surface, labeled with cationized ferritin before the interaction, were internalized together with untreated parasites. However, after interaction with glutaraldehyde-fixed or specific antibody-coated parasites, the cationized ferritin particles were observed in endocytic vacuoles which did not contain parasites. Macrophages previously labeled with albumin-gold at 37 degrees C, were incubated in the presence of cationized ferritin at 4 degrees C and then incubated with untreated or specific antibody-coated parasites. After interaction with opsonized parasites, the colloidal gold particles were observed in the parasitophorous vacuoles while the cationized ferritin particles were observed in cytoplasmic vesicles. However, when the interaction was carried out with untreated parasites, the parasitophorous vacuoles exhibited ferritin particles while the colloidal gold particles were observed in cytoplasmic vesicles. These observations, in association with studies previously reported, suggest that the state of the parasite surface determines the mechanism of parasite entry into the macrophage, the composition of the membrane lining the parasitophorous vacuole and the ability of lysosomes to fuse with the vacuoles.  相似文献   

15.
Internalization of lectins in neuronal GERL   总被引:29,自引:16,他引:13       下载免费PDF全文
Conjugates of ricin agglutinin and phytohemagglutinin with horseradish peroxidase (HRP) were used for a cytochemical study of internalization of their plasma membrane "receptors" in cultured isolated mouse dorsal root ganglion neurons. Labeling of cells with lectin-HRP was done at 4 degrees C, and internalization was performed at 37 degrees C in a culture medium free of lectin-HRP. 15-20 min after incubation at 37 degrees C, lectin-HRP receptor complexes were seen in vesicles or tubules located near the plasma membrane. After 1-3 h at 37 degrees C, lectin-HRP-receptor complexes accumulated in vesicles and tubules corresponding to acid phosphatase-rich vesicles and tubules (GERL) at the trans aspect of the Golgi apparatus. A few coated vesicles and probably some dense bodies contained HRP after 3-6 h of incubation at 37 degrees C. Soluble HRP was not endocytosed under the conditions of this experiment or when it was present in the incubation medium at 37 degrees C. Internalization of lectin-HRP-receptor conjugates was decreased or inhibited by mitochondrial respiration inhibitors but not by cytochalasin B or colchicine. These studies indicate that lectin- labeled plasma membrane moieties of neurons are endocytosed primarily in elements of GERL.  相似文献   

16.
We investigated the distribution of thrombospondin-specific binding sites and the uptake of thrombospondin-gold conjugates in cultured porcine endothelial cells by light and electron microscopy. Colloidal gold marker and silver enhancement techniques were applied for cytochemical detection of monomeric thrombospondin and fragments of thrombospondin. Thrombospondin binds to granular and fibrillar structures and to sites of cell-cell contact on the cell surface, as indicated by many proteoglycan-cuprolinic blue precipitates. Cell migration tracks on the culture dish bottom are most heavily stained. Labeling of intact thrombospondin and of proteolytic fragments of thrombospondin with colloidal gold followed by silver intensification enables one to detect its binding and uptake in endothelial cells. Binding to the cell surface and uptake of thrombospondin-gold particles was inhibited by heparin but not by hyaluronic acid or chondroitin sulfate. The heparin binding region at the N-terminal end of the thrombospondin molecule proved to be essential for cell surface binding. Gold-conjugated thrombospondin fragments devoid of the heparin binding region were not internalized. After 60 min incubation at 37 degrees C, thrombospondin-gold particles accumulated in the lysosomal compartment close to the nucleus. In the presence of monensin and ammonium chloride, vesicles in this area are swollen and the concentration of particulate marker is reduced. Binding and uptake of thrombospondin by vascular endothelial cells appears to require linkage of the heparin binding region of the thrombospondin molecule to coated pits and heparan sulfate-rich molecules as receptors. Colloidal gold conjugation of thrombospondin fragments proved to be useful for cytochemical characterization of molecular domains.  相似文献   

17.
Receptor-mediated hepatic uptake of low density lipoproteins (LDL) conjugated to colloidal gold was studied by perfusion of livers from rats treated for 5 d with 17 alpha-ethinylestradiol. Estrogen treatment resulted in a marked decrease in serum lipid and lipoprotein concentrations. After 15 min of perfusion the conjugate was bound to the hepatic microvilli of both control and estrogen-treated rats; the estrogen-treated rats showed an 8- to 11-fold greater number of membrane-bound conjugates. The conjugates were bound to the membrane receptor by the LDL particle because the gold granules were regularly displaced from the membrane by 20 +/- 3.2 nm, the diameter of LDL. Internalization of the conjugate, evident by gold particles in multivesicular bodies, occurred at coated pits at the base of the microvillus where coated vesicles containing a single gold-LDL conjugate were released. After 1 h of perfusion, the livers from the estrogen-treated rats showed all phases of endocytosis and incorporation into multivesicular bodies of the conjugate. After 2 h of perfusion, there was congregation of gold-labeled lysosomes near the bile canaliculi. Gold-LDL conjugates were also observed to bind and be internalized by Kupffer cells and sinusoidal endothelium. These findings indicate that estrogen treatment induces hepatic receptors for LDL. The catabolic pathway of binding and endocytosis of the conjugate is similar to that seen in fibroblasts, although slower. Because gold-LDL conjugates were also present in the Kupffer and endothelial cells, the uptake of LDL by the liver involves the participation of more than a single cell type.  相似文献   

18.
At 4 degrees C transferrin bound to receptors on the reticulocyte plasma membrane, and at 37 degrees C receptor-mediated endocytosis of transferrin occurred. Uptake at 37 degrees C exceeded binding at 4 degrees C by 2.5-fold and saturated after 20-30 min. During uptake at 37 degrees C, bound transferrin was internalized into a trypsin- resistant space. Trypsinization at 4 degrees C destroyed surface receptors, but with subsequent incubation at 37 degrees C, surface receptors rapidly appeared (albeit in reduced numbers), and uptake occurred at a decreased level. After endocytosis, transferrin was released, apparently intact, into the extracellular space. At 37 degrees C colloidal gold-transferrin (AuTf) clustered in coated pits and then appeared inside various intracellular membrane-bounded compartments. Small vesicles and tubules were labeled after short (5-10 min) incubations at 37 degrees C. Larger multivesicular endosomes became heavily labeled after longer (20-35 min) incubations. Multivesicular endosomes apparently fused with the plasma membrane and released their contents by exocytosis. None of these organelles appeared to be lysosomal in nature, and 98% of intracellular AuTf was localized in acid phosphatase-negative compartments. AuTf, like transferrin, was released with subsequent incubation at 37 degrees C. Freeze-dried and freeze-fractured reticulocytes confirmed the distribution of AuTf in reticulocytes and revealed the presence of clathrin-coated patches amidst the spectrin coating the inner surface of the plasma membrane. These data suggest that transferrin is internalized via coated pits and vesicles and demonstrate that transferrin and its receptor are recycled back to the plasma membrane after endocytosis.  相似文献   

19.
We have prepared a conjugate (Ri-Au) of the toxic plant protein ricin and colloidal gold (particle size 5 nm) and used it for internalization studies in monolayer cultures of Vero cells. The Ri-Au conjugate was very stable, with only little release of ricin ([125I]Ri) from the gold particles within a pH range of 4.5-8.0. Within 2 h at 37 degrees C, only very little intracellular degradation of the ricin preparation ([125I]Ri-Au) occurred. The cells bound the same proportion of native ricin ([125I]Ri) and Ri-Au from the medium, and the kinetics of toxicity (decrease in cellular incorporation of [3H]leucine) of [125I]Ri and [125I]Ri-Au were also comparable. At 4 degrees C, the cell-surface binding of Ri-Au was continuous and distinct, as revealed by electron microscopy. This binding was specific, since almost no Ri-Au surface binding occurred at 4 degrees C in the presence of 0.1 M lactose or 1 mg/ml native (unlabelled) ricin. Within the first 30 min of warming prelabelled cells to 37 degrees C, the amount of surface-associated Ri-Au decreased considerably (from 150 to 60 gold particles per micron cell surface in 40 nm sections). Coated pits and vesicles were involved in the internalization of Ri-Au, and within 5-30 min at 37 degrees C Ri-Au had been delivered to vacuolar and tubulo-vesicular portions of the endosomal system, and later also to lysosomes. Analysis of very thin (ca 20 nm) serial sections revealed that most of the tubulo-vesicular elements were separate structures not connected to the membrane of the vacuolar portion. Data here presented indicate that our ricin conjugate, like many "physiological' ligands and viruses, is internalized by receptor-mediated endocytosis via the coated pit-endosomal pathway.  相似文献   

20.
Reconstitution of clathrin-coated pit budding from plasma membranes   总被引:16,自引:12,他引:4       下载免费PDF全文
Receptor-mediated endocytosis begins with the binding of ligand to receptors in clathrin-coated pits followed by the budding of the pits away from the membrane. We have successfully reconstituted this sequence in vitro. Highly purified plasma membranes labeled with gold were obtained by incubating cells in the presence of anti-LDL receptor IgG-gold at 4 degrees C, attaching the labeled cells to a poly-L-lysine-coated substratum at 4 degrees C and then gently sonicating them to remove everything except the adherent membrane. Initially the gold label was clustered over flat, clathrin-coated pits. After these membranes were warmed to 37 degrees C for 5-10 min in the presence of buffer that contained cytosol extract, Ca2+, and ATP, the coated pits rounded up and budded from the membrane, leaving behind a membrane that was devoid of LDL gold. Simultaneous with the loss of the ligand, the clathrin triskelion and the AP-2 subunits of the coated pit were also lost. These results suggest that the budding of a coated pit to form a coated vesicle occurs in two steps: (a) the spontaneous rounding of the flat lattice into a highly invaginated coated pit at 37 degrees C; (b) the ATP, 150 microM Ca2+, and cytosolic factors(s) dependent fusion of the adjoining membrane segments at the neck of the invaginated pit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号