首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the GTP analogue guanosine 5'-[gamma-thio]triphosphate (GTP[S]) on the polyphosphoinositide phospholipase C (PLC) of rat liver was examined by using exogenous [3H]phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]. GTP[S] stimulated the membrane-bound PLC up to 20-fold, with a half-maximal effect at approx. 100 nM. Stimulation was also observed with guanosine 5'-[beta gamma-imido]triphosphate, but not with adenosine 5'-[gamma-thio]triphosphate, and was inhibited by guanosine 5'-[beta-thio]diphosphate. Membrane-bound PLC was entirely Ca2+-dependent, and GTP[S] produced both a decrease in the Ca2+ requirement and an increase in activity at saturating [Ca2+]. The stimulatory action of GTP[S] required millimolar Mg2+. [8-arginine]Vasopressin (100 nM) stimulated the PLC activity approx. 2-fold in the presence of 10 nM-GTP[S], but had no effect in the absence of GTP[S] or at 1 microM-GTP[S]. The hydrolysis of PtdIns(4,5)P2 by membrane-bound PLC was increased when the substrate was mixed with phosphatidylethanolamine, phosphatidylcholine or various combinations of these with phosphatidylserine. With PtdIns(4,5)P2, alone or mixed with phosphatidylcholine, GTP[S] evoked little or no stimulation of the PLC activity. However, maximal stimulation by GTP[S] was observed in the presence of a 2-fold molar excess of phosphatidylserine or various combinations of phosphatidylethanolamine and phosphatidylserine. Hydrolysis of [3H]phosphatidylinositol 4-phosphate by membrane-bound PLC was also increased by GTP[S]. However, [3H]phosphatidylinositol was a poor substrate, and its hydrolysis was barely affected by GTP[S]. Cytosolic PtdIns(4,5)P2-PLC exhibited a Ca2+-dependence similar to that of the membrane-bound activity, but was unaffected by GTP[S]. It is concluded that rat liver plasma membranes possess a Ca2+-dependent polyphosphoinositide PLC that is activated by hormones and GTP analogues, depending on the Mg2+ concentration and phospholipid environment. It is proposed that GTP analogues and hormones, acting through a guanine nucleotide-binding protein, activate the enzyme mainly by lowering its Ca2+ requirement.  相似文献   

2.
Phosphodiesteric cleavage of phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P2) is required for transmembrane signaling by chemoattractants in human polymorphonuclear leukocytes (PMN). Considering the importance of PtdIns-4,5-P2 as a reservoir for second messenger substances, we have characterized the enzyme system that synthesizes this phospholipid in human PMN, consisting of kinases for phosphatidylinositol (PtdIns) and phosphatidylinositol-4-phosphate (PtdIns-4-P). The preferred phosphate donor for both enzymes was ATP as compared with GTP. The respective Km for ATP for PtdIns kinase and PtdIns-P kinase were 0.049 +/- 0.013 and 0.062 +/- 0.005 mM and for GTP were 0.242 +/- 0.016 and 0.186 +/- 0.037 mM. PtdIns stimulated the activity of PtdIns kinase to a greater extent than PtdIns-4-P kinase. PtdIns-4-P inhibited the activity of detergent-solubilized PtdIns kinase and stimulated particulate PtdIns-4-P kinase, whereas both enzymes exhibited substrate inhibition to PtdIns-4,5-P2. Mg2+ was the preferred cation for both enzymes, but the apparent Km values (4.1 +/- 0.9 mM for PtdIns kinase and 1.0 +/- 0.7 mM for PtdIns-4-P kinase) were significantly different (p less than 0.005). Mn2+ partially substituted for Mg2+, and both enzymes were inhibited by Ca2+. The polyamine spermine stimulated PtdIns-4-P kinase activity to a greater extent and at lower concentrations than PtdIns kinase. PtdIns kinase was easily solubilized in both Triton X-100 and Nonidet P-40, whereas PtdIns-4-P kinase remained in a detergent-nonextractable membrane fraction. These findings demonstrate that the enzyme system in human PMN that forms PtdIns-4,5-P2 is composed of two distinct enzymes with similar characteristics.  相似文献   

3.
Phosphatidylinositol 3-phosphate (PtdIns(3)P), a recently described phospholipid, has been linked to polyoma virus-induced cellular transformation and platelet-derived growth factor-mediated mitogenesis. PtdIns(3)P, in contrast to phosphatidylinositol, phosphatidylinositol 4-phosphate (PtdIns(4)P), and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), is resistant to hydrolysis by bovine brain phospholipase C gamma. We present here the identification of a phosphomonoesterase activity from the soluble fraction of NIH 3T3 cells which removes the phosphate from the D-3 position of PtdIns(3)P. This enzyme is specific as it has little or no activity on the monoester phosphates of PtdIns(4)P, PtdIns(4,5)P2, or inositol 1,3-bisphosphate and is tentatively designated phosphatidylinositol 3-phosphatase (PtdIns 3-phosphatase). The enzyme does not require added metal ions for activity and is maximally active in the presence of EDTA. It is inhibited by Ca2+, Mg2+, Zn2+, and the phosphatase inhibitor VO4(3-). In addition, there is no phospholipase C activity toward PtdIns(3)P in the soluble fraction of NIH 3T3 cells. In view of the absence of a phospholipase C activity that hydrolyzes PtdIns(3)P, we propose that PtdIns(3)P is not a precursor for a soluble inositol phosphate messenger but that it instead may act directly to control certain cellular processes or as a precursor for other phosphatidylinositols. PtdIns 3-phosphatase may thus terminate a metabolic signal or regulate precursor levels for other phosphatidylinositols that are phosphorylated in the D-3 position.  相似文献   

4.
The metabolism of phosphatidylinositol (PtdIns) was studied in a mink lung epithelial cell line and its subclones transformed by feline sarcoma viruses containing either the v-fms or v-fes oncogenes. The transformed cell lines had a higher rate of PtdIns turnover but did not have elevated levels of phosphorylated PtdIns species or PtdIns kinase activity. Significantly higher specific activities of a guanine nucleotide-activated PtdIns-4,5-diphosphate phospholipase C were detected in both transformed cell lines (F3CL7(v-fes), 55 pmol/min/mg of protein and G2M(v-fms), 18 pmol/min/mg of protein) as compared to the nontransformed parental cell line (CCL64, 2 pmol/min/mg of protein). The guanine nucleotide-stimulated phospholipase C activity was specific for PtdIns-4,5-diphosphate, and the water-soluble hydrolysis product was inositol 1,4,5-triphosphate. Both GTP and nonhydrolyzable GTP analogs activated the phospholipase C, whereas ATP was weakly effective and GDP was inactive. The phospholipase C activity was maximally active in the presence of 9 mM sodium cholate, had a sharp pH optimum of pH 6.5, and was not activated by calcium although hydrolysis was inhibited by high concentrations of EDTA. These data point to enhanced production of diacylglycerol and inositol 1,4,5-triphosphate second messengers in transformed cells due to the activation of guanine nucleotide-dependent PtdIns-4,5-diphosphate-specific phospholipase C and suggest that the generation of aberrant hormonally independent signals is associated with cell transformation by oncogenes encoding tyrosine-specific protein kinases.  相似文献   

5.
Thyrotropin-releasing hormone (TRH) stimulates hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P2) by a phospholipase C (or phosphodiesterase) and elevates cytoplasmic-free Ca2+ concentration ([Ca2+]i) in GH3 pituitary cells. To explore whether hydrolysis of PtdIns-4,5-P2 is secondary to the elevation of [Ca2+]i, we studied the effects of Ca2+ ionophores, A23187 and ionomycin. In cells prelabeled with [3H]myoinositol, A23187 caused a rapid decrease in the levels of [3H]PtdIns-4,5-P2, [3H]PtdIns-4-P, and [3H]PtdIns to 88 +/- 2%, 88 +/- 4%, and 86 +/- 1% of control, respectively, and increased [3H]inositol bisphosphate to 200 +/- 20% at 0.5 min. There was no increase in [3H] Ins-P3; the lack of a measurable increase in [3H]Ins-P3 was not due to its rapid dephosphorylation. In cells prelabeled with [14C]stearic acid, A23187 increased [14C]diacylglycerol and [14C]phosphatidic acid to 166 +/- 20% and 174 +/- 17% of control, respectively. In cells prelabeled with [3H]arachidonic acid, A23187, but not TRH, increased unesterified [3H]arachidonic acid to 166 +/- 8% of control. Similar effects were observed with ionomycin. Hence, Ca2+ ionophores stimulate phosphodiesteratic hydrolysis of PtdIns-4-P but not of PtdIns-4,5-P2 and elevate the level of unesterified arachidonic acid in GH3 cells. These data demonstrate that Ca2+ ionophores affect phosphoinositide metabolism differently than TRH and suggest that TRH stimulation of PtdIns-4,5-P2 hydrolysis is not secondary to the elevation of [Ca2+]i.  相似文献   

6.
Secretagogue-induced phosphoinositide metabolism in human leucocytes.   总被引:17,自引:7,他引:10       下载免费PDF全文
The relationship between receptor binding of the formylated peptide chemoattractant formylmethionylleucylphenylalanine (fMet-Leu-Phe), lysosomal enzyme secretion and metabolism of membrane phospholipids was evaluated in both human polymorphonuclear leucocytes (PMN) and the dimethyl sulphoxide (Me2SO)-stimulated human myelomonocytic HL-60 leukaemic cell line. In both cell types, exposure to fMet-Leu-Phe (100 nM) induced rapid lysosomal enzyme secretion (maximal release less than 30 s) and marked changes in the 32P-labelling of the inositol lipids phosphatidylinositol (PtdIns), phosphatidylinositol 4-phosphate (PtdIns4P), phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] as well as phosphatidic acid (PtdA). Specifically, levels of [32P]PtdIns and [32P]PtdIns(4,5)P2 decreased rapidly (peak decrease at 10-15s), with a subsequent increase at 30 s and later. PtdIns4P and PtdA showed only an increase. In Me2SO-differentiated HL-60 cells prelabelled with [3H]inositol for 20 h, fMet-Leu-Phe caused a net increase in the cellular content of [3H]inositol phosphates, including a rapid increase in [3H]inositol 1,4,5-trisphosphate, suggesting that PtdIns(4,5)P2 breakdown occurs by a phospholipase C mechanism. Both lysosomal enzyme secretion and changes in phospholipid metabolism occur over the same agonist concentration range with a similar time course. Binding of [3H]fMet-Leu-Phe, although occurring over the same concentration range, exhibited markedly slower kinetics. Although depletion of extracellular Ca2+ had no effect on ligand-induced polyphosphoinositide turnover, PtdIns turnover, PtdA labelling and lysosomal enzyme secretion were severely curtailed. These studies demonstrate a receptor-mediated enhancement of phospholipid turnover that correlates with a specific biological response to fMet-Leu-Phe. Further, the results are consistent with the idea that phospholipase C-mediated degradation of PtdIns(4,5)P2, which results in the formation of inositol trisphosphate, is an early step in the stimulus-secretion coupling pathway of the neutrophil. The lack of correlation between these two responses and the equilibrium-binding condition suggests that either these parameters are responsive to the rate of ligand-receptor interaction or only fractional occupation is required for a full biological response.  相似文献   

7.
Three forms (I, IIa and IIb) of phospholipase C, hydrolyzing specifically inositol phospholipids, were resolved from human platelet cytosol and partially purified by DEAE-cellulose, phenyl-Sepharose, Ultrogel ACA-44 and hydroxylapatite column chromatographies. All three forms exhibited pH optimum at 6.5 - 7.0 in the presence of deoxycholate and their molecular weights were 67,000 (form I), 120,000 (IIa) and 70,000 (IIb). These enzymes hydrolyzed both phosphatidylinositol and phosphatidylinositol 4,5-bisphosphate in Ca2+-dependent manner; their maximal activities for phosphatidylinositol hydrolysis were obtained at 10(-4) to 10(-3) M Ca2+, whereas phosphatidylinositol 4,5-bisphosphate was preferentially hydrolyzed at lower concentration of Ca2+.  相似文献   

8.
Addition of phytohaemagglutinin (PHA) to the [32P]Pi-prelabelled JURKAT cells, a human T-cell leukaemia line, resulted in a decrease of [32P]phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] to about 35% of the control value. The decrease was almost complete within 30s after the PHA addition. This decrease was followed by an increase in the 32P-labelling of phosphatidic acid (maximally 2.8-fold at 2 min). The stimulation of myo-[2-3H]inositol-prelabelled JURKAT cells by PHA induced an accumulation of [2-3H]inositol trisphosphate in the presence of 5 mM-LiCl. The result indicates hydrolysis of PtdIns (4,5)P2 by a phospholipase C. The PHA stimulation of JURKAT cells induced about 6-fold increase in the cytosolic free Ca2+ concentration, [Ca2+]i, which was reported by Quin-2, a fluorescent Ca2+ indicator. Studies with partially Ca2+-depleted JURKAT cells, with the Ca2+ ionophore A23187, and with 8-(diethylamino)-octyl-3,4,5-trimethoxybenzoate indicate that the breakdown of PtdIns(4,5)P2 is not mediated through changes of [Ca2+]i. These results therefore indicate that the PHA-induced breakdown of PtdIns(4,5)P2 in JURKAT cells is not dependent on the Ca2+ mobilization.  相似文献   

9.
The metabolism of phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] in rat parotid acinar cells was investigated, particularly with regard to the effects of receptor-active agonists. Stimulation of cholinergic-muscarinic receptors with methacholine provoked a rapid disappearance of 40--50% of [32P]PtdIns(4,5)P2, but had no effect on PtdIns4P. Adrenaline, acting on alpha-adrenoceptors, and Substance P also stimulated net loss of PtdIns(4,5)P2. The beta-adrenoceptor agonist, isoprenaline, and the Ca2+ ionophore, ionomycin, failed to affect labelled PtdIns(4,5)P2 or PtdIns4P. By chelation of extracellular Ca2+ with excess EGTA, and by an experimental protocol that eliminates cellular Ca2+ release, it was demonstrated that the agonist-induced decrease in PtdIns(4,5)P2 is independent of both Ca2+ influx and Ca2+ release. These results may suggest that net PtdIns(4,5)P2 breakdown is an early event in the stimulus-response pathway of the parotid acinar cell and could be directly involved in the mechanism of agonist-induced Ca2+ release from the plasma membrane.  相似文献   

10.
1. A Hepes-based medium has been devised which allows rapid Pi exchange across the plasma membrane of the human erythrocyte. This allows the metabolically labile phosphate pools of human erythrocytes to come to equilibrium with [32P]Pi in the medium after only 5 h in vitro. 2. After 5-7 h incubation with [32P]Pi in this medium, only three phospholipids, phosphatidic acid (PtdOH), phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2) are radioactively labelled. The concentrations of PtdIns4P and PtdIns4,5P2 remain constant throughout the incubation, so this labelling process is a reflection of the steady-state turnover of their monoester phosphate groups. 3. During such incubations, the specific radioactivities of the monoesterified phosphates of PtdIns4, PtdIns4,5P2 and PtdOH come to a steady value after 5 h that is only 25-30% of the specific radioactivity of the gamma-phosphate of ATP at that time. We suggest that this is a consequence of metabolic heterogeneity. This heterogeneity is not a result of the heterogeneous age distribution of the erythrocytes in human blood. Thus it appears that there is metabolic compartmentation of these lipids within cells, such that within a time-scale of a few hours only 25-30% of these three lipids are actively metabolized. 4. The phosphoinositidase C of intact human erythrocytes, when activated by Ca2+-ionophore treatment, only hydrolyses 50% of the total PtdIns4,5P2 and 50% of 32P-labelled PtdIns4,5P2 present in the cells: this enzyme does not discriminate between the metabolically active and inactive compartments of lipids in the erythrocyte membrane. Hence at least four metabolic pools of PtdIns4P and PtdIns4,5P2 are distinguishable in the human erythrocyte plasma membrane. 5. The mechanisms by which multiple non-mixing metabolic pools of PtdOH, PtdIns4P and PtdIns4,5P2 are sustained over many hours in the plasma membranes of intact erythrocytes are unknown, although some possible explanations are considered.  相似文献   

11.
The eicosanoids are centrally involved in the onset and resolution of inflammatory processes. A key enzyme in eicosanoid biosynthesis during inflammation is group IVA phospholipase A2 (also known as cytosolic phospholipase A2alpha, cPLA2alpha). This enzyme is responsible for generating free arachidonic acid from membrane phospholipids. cPLA2alpha translocates to perinuclear membranes shortly after cell activation, in a process that is governed by the increased availability of intracellular Ca2+. However, cPLA2alpha also catalyzes membrane phospholipid hydrolysis in response to agonists that do not mobilize intracellular Ca2+. How cPLA2alpha interacts with membranes under these conditions is a major, still unresolved issue. Here, we report that phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] promotes translocation of cPLA2alpha to perinuclear membranes of intact cells in a manner that is independent of rises in the intracellular Ca2+ concentration. PtdIns(4,5)P2 anchors the enzyme to perinuclear membranes and allows for a proper interaction with its phospholipid substrate to release arachidonic acid.  相似文献   

12.
The pleckstrin homology (PH) domains of phospholipase C (PLC)-delta1 and a related catalytically inactive protein, p130, both bind inositol phosphates and inositol lipids. The binding to phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] by PLC-delta1 is proposed to be the critical interaction required for membrane localization to where the substrate resides; it is also required for the Ca(2+)-dependent activation of PLC-delta1 observed in the permeabilized cells. In the proximity of the PH domain, both PLC-delta1 and p130 possess the EF-hand domain, containing classical motifs implicated in calcium binding. Therefore, in the present study we examined whether the binding of the PH domain to PtdIns(4,5)P2 is regulated by changes in free Ca2+ concentration within the physiological range. A Ca2+ dependent increase in the binding to PtdIns(4,5)P2 was observed with a full-length PLC-delta1, while the isolated PH domain did not show any Ca2+ dependence. However, the connection of the EF-hand motifs to the PH domain restored the Ca2+ dependent increase in binding, even in the absence of the C2 domain. The p130 protein showed similar properties to PLC-delta1, and the EF-hand motifs were again required for the PH domain to exhibit a Ca2+ dependent increase in the binding to PtdIns(4,5)P2. The isolated PH domains from several other proteins which have been demonstrated to bind PtdIns(4,5)P2 showed no Ca2+ dependent enhancement of binding. However, when present within a chimera also containing PLC-delta1 EF-hand motifs, the Ca2+ dependent binding was again observed. These results suggest that the binding of Ca2+ to the EF-hand motifs can modulate binding to PtdIns(4,5)P2 mediated by the PH domain.  相似文献   

13.
We studied the possibility that hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] may be the initiating event for the increase in [32P]Pi incorporation into phosphatidic acid (PtdA) and phosphatidylinositol (PtdIns) during carbachol and pancreozymin (cholecystokinin-octapeptide) action in the rat pancreas. After prelabelling acini for 2h, [32P]Pi incorporation into PtdA, PtdIns(4,5)P2 and phosphatidylinositol 4-phosphate (PtdIns4P) had reached equilibrium. Subsequent addition of carbachol or pancreozymin caused 32P in PtdIns(4,5)P2 to decrease by 30-50% within 10-15 s, and this was followed by sequential increases in [32P]Pi incorporation into PtdA and PtdIns. Similar changes in 32P-labelling of PtdIns4P were not consistently observed. Confirmation that the decrease in 32P in chromatographically-purified PtdIns(4,5)P2 reflected an actual decrease in this substance was provided by the fact that similar results were obtained (a) when PtdIns(4,5)P2 was prelabelled with [2-3H]inositol, and (b) when PtdIns(4,5)P2 was measured as its specific product (glycerophosphoinositol bisphosphate) after methanolic alkaline hydrolysis and ion-exchange chromatography. The secretogogue-induced breakdown of PtdIns(4,5)P2 was not inhibited by Ca2+ deficiency (severe enough to inhibit amylase secretion and Ca2+-dependent hydrolysis of PtdIns), and ionophore A23187 treatment did not provoke PtdIns(4,5)P2 hydrolysis. The increase in the hydrolysis of PtdIns(4,5)P2 and the increase in [32P]Pi incorporation into PtdA commenced at the same concentration of carbachol in dose-response studies. Our findings suggest that the hydrolysis of PtdIns(4,5)P2 is an early event in the action of pancreatic secretogogues that mobilize Ca2+, and it is possible that this hydrolysis may initiate the Ca2+-independent labelling of PtdA and PtdIns. Ca2+ mobilization may follow these responses, and subsequently cause Ca2+-dependent hydrolysis of PtdIns and exocytosis.  相似文献   

14.
This work shows the existence of a phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P2) bound form of the cardiac sarcolemmal Na+/Ca2+ exchanger. That was demonstrated in Western blots and cross-immunoprecipitation by using specific antibodies against the NCX1 exchanger (NCX1) and against PtdIns-4,5-P2. In addition, PtdIns-4,5-P2 bound to the Na+/Ca2+ exchanger and the Na+/Ca2+ exchange fluxes displayed a similar MgATP regulation: (a) both increase by 100-130% when membrane vesicles are incubated (15-20 s at 37 degrees C) with 1 mM MgATP and 1 microM Ca2+ (b) in the presence of 100 microM Ca2+, MgATP fails to stimulate the exchange fluxes and does not modify the levels of PtdIns-4,5-P2 bound to the exchanger. In addition, in the absence of Ca2+, the net synthesis of total membrane PtdIns-4,5-P2 is greatly reduced compared with that in the presence of 1 microM Ca2+. Furthermore, in the absence of Ca2+ there is no effect of MgATP on the levels of PtdIns-4,5-P2 bound to the exchanger. These results indicate that, in bovine heart, MgATP-stimulation of Na+/Ca2+ exchange is associated with intracellular Ca2+-dependent levels of PtdIns-4,5-P2 bound to the exchanger molecule.  相似文献   

15.
Adaptors appear to control clathrin-coat assembly by determining the site of lattice polymerization but the nucleating events that target soluble adaptors to an appropriate membrane are poorly understood. Using an in vitro model system that allows AP-2-containing clathrin coats to assemble on lysosomes, we show that adaptor recruitment and coat initiation requires phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) synthesis. PtdIns(4,5)P2 is generated on lysosomes by the sequential action of a lysosome-associated type II phosphatidylinositol 4-kinase and a soluble type I phosphatidylinositol 4-phosphate 5-kinase. Phosphatidic acid, which potently stimulates type I phosphatidylinositol 4-phosphate 5-kinase activity, is generated on the bilayer by a phospholipase D1-like enzyme located on the lysosomal surface. Quenching phosphatidic acid function with primary alcohols prevents the synthesis of PtdIns(4, 5)P2 and blocks coat assembly. Generating phosphatidic acid directly on lysosomes with exogenous bacterial phospholipase D in the absence of ATP still drives adaptor recruitment and limited coat assembly, indicating that PtdIns(4,5)P2 functions, at least in part, to activate the PtdIns(4,5)P2-dependent phospholipase D1. These results provide the first direct evidence for the involvement of anionic phospholipids in clathrin-coat assembly on membranes and define the enzymes responsible for the production of these important lipid mediators.  相似文献   

16.
The effect of guanine nucleotides on platelet and calf brain cytosolic phospholipase C was examined in the absence of membranes or detergents in an assay using labeled lipid vesicles. Guanine nucleotides stimulate hydrolysis of [3H]phosphatidylinositol 4,5-bisphosphate [( 3H]PtdIns-4,5-P2) catalyzed both by enzyme from human platelets and by partially purified enzyme from calf brain. Guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) was the most potent guanine nucleotide with a half-maximal stimulation at 1-10 microM, followed by guanosine 5'-(beta, gamma-imido)triphosphate greater than GTP greater than GDP = guanosine 5'-O-(2-thiodiphosphate). Guanosine 5'-O-(2-thiodiphosphate) was able to reverse the GTP gamma S-mediated stimulation. NaF also stimulated phospholipase C activity, further implying a role for a guanine nucleotide-binding protein. In the presence of GTP gamma S, the enzyme cleaved PtdIns-4,5-P2 at higher pH values, and the need for calcium ions was reduced 100-fold. The stimulation of PtdIns-4,5-P2 hydrolysis by GTP gamma S ranged from 2 to 25-fold under various conditions, whereas hydrolysis of [3H]phosphatidylinositol was only slightly affected by guanine nucleotides. We propose that a soluble guanine nucleotide-dependent protein activates phospholipase C to hydrolyze its initial substrate in the sequence of phosphoinositide-derived messenger generation.  相似文献   

17.
The metabolism of the inositol lipids and phosphatidic acid in rat lacrimal acinar cells was investigated. The muscarinic cholinergic agonist methacholine caused a rapid loss of 15% of [32P]phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] and a rapid increase in [32P]phosphatidic acid (PtdA). Chemical measurements indicated that the changes in 32P labelling of these lipids closely resembled changes in their total cellular content. Chelation of extracellular Ca2+ with excess EGTA caused a significant decrease in the PtdA labelling and an apparent loss of PtdIns(4,5)P2 breakdown. The calcium ionophores A23187 and ionomycin provoked a substantial breakdown of [32P]PtdIns(4,5)P2 and phosphatidylinositol 4-phosphate (PtdIns4P); however, a decrease in [32P]PtdA was also observed. Increases in inositol phosphate, inositol bisphosphate and inositol trisphosphate were observed in methacholine-stimulated cells, and this increase was greatly amplified in the presence of 10 mM-LiCl; alpha-adrenergic stimulation also caused a substantial increase in inositol phosphates. A23187 provoked a much smaller increase in the formation of inositol phosphates than did either methacholine or adrenaline. Experiments with excess extracellular EGTA and with a protocol that eliminates intracellular Ca2+ release indicated that the labelling of inositol phosphates was partially dependent on the presence of extracellular Ca2+ and independent of intracellular Ca2+ mobilization. Thus, in the rat lacrimal gland, there appears to be a rapid phospholipase C-mediated breakdown of PtdIns(4,5)P2 and a synthesis of PtdA, in response to activation of receptors that bring about an increase in intracellular Ca2+. The results are consistent with a role for these lipids early in the stimulus-response pathway of the lacrimal acinar cell.  相似文献   

18.
Two peaks (mPLC-I and mPLC-II) of phosphatidylinositol 4,5-bisphosphate (PIP2)-hydrolyzing activity were resolved when 1% sodium cholate extract from particulate fractions of human platelet was chromatographed on a heparin-Sepharose column. The major peak of enzyme activity (mPLC-II) was purified to homogeneity by a combination of Fast Q-Sepharose, heparin-Sepharose, Ultrogel AcA-44, Mono Q, Superose 6-12 combination column, and Superose 12 column chromatographies. The specific activity increased 2,700-fold as compared with that of the starting particulate fraction. The purified mPLC-II had an estimated molecular weight of 61,000 on sodium dodecyl sulfate-polyacrylamide gels. The minor peak of enzyme activity (mPLC-I) was partially purified to 430-fold. Both enzymes hydrolyzed PIP2 at low Ca2+ concentration (0.1-10 microM) and exhibited higher Vmax for PIP2 than for phosphatidylinositol. PIP2-hydrolyzing activities of both enzymes were enhanced by various detergents and lipids, such as deoxycholate, cholate, phosphatidylethanolamine, and dimyristoylphosphatidylcholine. The mPLC-I and mPLC-II activities were increased by Ca2+, but not by Mg2+, while Hg2+, Fe2+, Cu2+, and La3+ were inhibitory. GTP-binding proteins (Gi, Go, and Ki-ras protein) had no significant effects on the mPLC-II activity.  相似文献   

19.
Using bovine heart sarcolemma vesicles we studied the effects of protons and phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P2) on the affinity of the mammalian Na(+)/Ca(2+) exchanger (NCX1) for intracellular Ca(2+). By following the effects of extravesicular ligands in inside-out vesicles, their interactions with sites of NCX1 facing the intracellular medium were investigated. Two Na(+)-gradient-dependent fluxes were studied: Ca(2+) uptake and Ca(2+) release. PtdIns-4,5-P2 binding to NCX1 was investigated in parallel. Without MgATP (no 'de novo' synthesis of PtdIns-4,5-P2), alkalinization increased the affinity for Ca(2+) and the PtdIns-4,5-P2 bound to NCX1. Vesicles depleted of phosphoinositides were insensitive to alkalinization, but became responsive following addition of exogenous PtdIns-4,5-P2 or PtdIns plus MgATP. Acidification reduced the affinity for Ca(2+)(ev); this was only partially reversed by MgATP, despite the increase in bound PtdIns-4,5-P2 to levels observed with alkalinization. Inhibition of Ca(2+) uptake by increasing extravesicular [Na(+)] indicates that it is related to H(+)(i) and Na(+)(i) synergistic inhibition of the Ca(2+)(i) regulatory site. Therefore, the affinity of the NCX1 Ca(2+)(i) regulatory site for Ca(2+) was maximal when both intracellular alkalinization and an increase in PtdIns-4,5-P2 bound to NCX1 (not just of the total membrane PtdIns-4,5-P2) occurred simultaneously. In addition, protons influenced the distribution, or the exposure, of PtdIns-4,5-P2 molecules in the surroundings and/or on the exchanger protein.  相似文献   

20.
In inside-out bovine heart sarcolemmal vesicles, p-chloromercuribenzenesulfonate (PCMBS) and n-ethylmaleimide (NEM) fully inhibited MgATP up-regulation of the Na+/Ca2+ exchanger (NCX1) and abolished the MgATP-dependent PtdIns-4,5P2 increase in the NCX1-PtdIns-4,5P2 complex; in addition, these compounds markedly reduced the activity of the PtdIns(4)-5kinase. After PCMBS or NEM treatment, addition of dithiothreitol (DTT) restored a large fraction of the MgATP stimulation of the exchange fluxes and almost fully restored PtdIns(4)-5kinase activity; however, in contrast to PCMBS, the effects of NEM did not seem related to the alkylation of protein SH groups. By itself DTT had no effect on the synthesis of PtdIns-4,5P2 but affected MgATP stimulation of NCX1: moderate inhibition at 1 mM MgATP and 1 μM Ca2+ and full inhibition at 0.25 mM MgATP and 0.2 μM Ca2+. In addition, DDT prevented coimmunoprecipitation of NCX1 and PtdIns(4)-5kinase. These results indicate that, for a proper MgATP up-regulation of NCX1, the enzyme responsible for PtdIns-4,5P2 synthesis must be (i) functionally competent and (ii) set in the NCX1 microenvironment closely associated to the exchanger. This kind of supramolecular structure is needed to optimize binding of the newly synthesized PtdIns-4,5P2 to its target region in the exchanger protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号