首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many groups show higher species richness in tropical regions but the underlying causes remain unclear. Despite many competing hypotheses to explain latitudinal diversity gradients, only three processes can directly change species richness across regions: speciation, extinction and dispersal. These processes can be addressed most powerfully using large-scale phylogenetic approaches, but most previous studies have focused on small groups and recent time scales, or did not separate speciation and extinction rates. We investigate the origins of high tropical diversity in amphibians, applying new phylogenetic comparative methods to a tree of 2871 species. Our results show that high tropical diversity is explained by higher speciation in the tropics, higher extinction in temperate regions and limited dispersal out of the tropics compared with colonization of the tropics from temperate regions. These patterns are strongly associated with climate-related variables such as temperature, precipitation and ecosystem energy. Results from models of diversity dependence in speciation rate suggest that temperate clades may have lower carrying capacities and may be more saturated (closer to carrying capacity) than tropical clades. Furthermore, we estimate strikingly low tropical extinction rates over geological time scales, in stark contrast to the dramatic losses of diversity occurring in tropical regions presently.  相似文献   

2.
The increase in species richness from the poles to the tropics, referred to as the latitudinal diversity gradient, is one of the most ubiquitous biodiversity patterns in the natural world. Although understanding how rates of speciation and extinction vary with latitude is central to explaining this pattern, such analyses have been impeded by the difficulty of estimating diversification rates associated with specific geographic locations. Here, we use a powerful phylogenetic approach and a nearly complete phylogeny of mammals to estimate speciation, extinction, and dispersal rates associated with the tropical and temperate biomes. Overall, speciation rates are higher, and extinction rates lower, in the tropics than in temperate regions. The diversity of the eight most species-rich mammalian orders (covering 92% of all mammals) peaks in the tropics, except that of the Lagomorpha (hares, rabbits, and pikas) reaching a maxima in northern-temperate regions. Latitudinal patterns in diversification rates are strikingly consistent with these diversity patterns, with peaks in species richness associated with low extinction rates (Primates and Lagomorpha), high speciation rates (Diprotodontia, Artiodactyla, and Soricomorpha), or both (Chiroptera and Rodentia). Rates of range expansion were typically higher from the tropics to the temperate regions than in the other direction, supporting the “out of the tropics” hypothesis whereby species originate in the tropics and disperse into higher latitudes. Overall, these results suggest that differences in diversification rates have played a major role in shaping the modern latitudinal diversity gradient in mammals, and illustrate the usefulness of recently developed phylogenetic approaches for understanding this famous yet mysterious pattern.  相似文献   

3.
Differences in species richness between regions are ultimately explained by patterns of speciation, extinction, and biogeographic dispersal. Yet, few studies have considered the role of all three processes in generating the high biodiversity of tropical regions. A recent study of a speciose group of predominately New World frogs (Hylidae) showed that their low diversity in temperate regions was associated with relatively recent colonization of these regions, rather than latitudinal differences in diversification rates (rates of speciation–extinction). Here, we perform parallel analyses on the most species-rich group of Old World frogs (Ranidae; ∼1300 species) to determine if similar processes drive the latitudinal diversity gradient. We estimate a time-calibrated phylogeny for 390 ranid species and use this phylogeny to analyze patterns of biogeography and diversification rates. As in hylids, we find a strong relationship between the timing of colonization of each region and its current diversity, with recent colonization of temperate regions from tropical regions. Diversification rates are similar in tropical and temperate clades, suggesting that neither accelerated tropical speciation rates nor greater temperate extinction rates explain high tropical diversity in this group. Instead, these results show the importance of historical biogeography in explaining high species richness in both the New World and Old World tropics.  相似文献   

4.
Aim Documentation of the ongoing effect of rain forest refuges at the last glacial maximum (LGM) on patterns of tropical freshwater fish diversity. Location Tropical South and Central America, and West Africa. Methods LGM rain forest regions and species richness by drainage were compiled from published data. GIS mapping was applied to compile drainage area and contemporary primary productivity. We used multiple regression analyses, applied separately for Tropical South America, Central America and West Africa, to assess differences in species richness between drainages that were connected and disconnected to rain forest refuge zones during the LGM. Spatial autocorrelation of the residuals was tested using Moran's I statistic. We added an intercontinental comparison to our analyses to see if a historical signal would persist even when a regional historical effect (climate at the LGM) had already been accounted for. Results Both area and history (contact with LGM rain forest refuge) explained the greatest proportions of variance in the geographical pattern of riverine species richness. In the three examined regions, we found highest richness in drainages that were connected to the rain forest refuges. No significant residual spatial autocorrelation was detected after considering area, primary productivity and LGM rain forest refuges. These results show that past climatic events still affect West African and Latin American regional and continental freshwater fish richness. At the continental scale, we found South American rivers more species‐rich than expected on the basis of their area, productivity and connectedness to rain forest refuge. Conversely, Central American rivers were less species‐diverse than expected by the grouped model. African rivers were intermediate. Therefore, a historical signal persists even when a regional historical effect (climate at the LGM) had already been accounted for. Main conclusions It has been hypothesized that past climatic events have limited impact on species richness because species have tracked environmental changes through range shifts. However, when considering organisms with physically constrained dispersal (such as freshwater fish), past events leave a perceptible imprint on present species diversity. Furthermore, we considered regions that have comparable contemporary climatic and environmental characteristics, explaining the absence of a productivity effect. From the LGM to the present day (a time scale of 18,000 years), extinction processes should have played a predominant role in shaping the current diversity pattern. By contrast, the continental effects could reflect historical contingencies explained by differences in speciation and extinction rates between continents at higher time scales (millions of years).  相似文献   

5.
A latitudinal gradient in biodiversity has existed since before the time of the dinosaurs, yet how and why this gradient arose remains unresolved. Here we review two major hypotheses for the origin of the latitudinal diversity gradient. The time and area hypothesis holds that tropical climates are older and historically larger, allowing more opportunity for diversification. This hypothesis is supported by observations that temperate taxa are often younger than, and nested within, tropical taxa, and that diversity is positively correlated with the age and area of geographical regions. The diversification rate hypothesis holds that tropical regions diversify faster due to higher rates of speciation (caused by increased opportunities for the evolution of reproductive isolation, or faster molecular evolution, or the increased importance of biotic interactions), or due to lower extinction rates. There is phylogenetic evidence for higher rates of diversification in tropical clades, and palaeontological data demonstrate higher rates of origination for tropical taxa, but mixed evidence for latitudinal differences in extinction rates. Studies of latitudinal variation in incipient speciation also suggest faster speciation in the tropics. Distinguishing the roles of history, speciation and extinction in the origin of the latitudinal gradient represents a major challenge to future research.  相似文献   

6.
Climate changes during the Pleistocene produced shifts, reductions, and expansions of biomes that, in turn, have been hypothesized to have driven speciation and extinction and shaped patterns of biodiversity. Here, we explore effects of Late Pleistocene climatic changes on environmentally and geographically cohesive areas mimicking species’ distributions. We analyzed persistence of these ‘species’ over the transition from the warm Last Interglacial period to the cool Last Glacial Maximum period to warm present‐day conditions, for four levels of environmental restriction (5, 10, 15 and 20% of overall variation; akin to niche breadths). African environments were overall much less conserved over these periods than those of South America, matching diversity contrasts between the two continents. Results thus indicate that biodiversity patterns relate closely to historical patterns of environmental grain and their stability through time; this view is a step toward an integral understanding of the role of environmental and geographic factors in the process of biological diversification.  相似文献   

7.

Question

Global‐scale forest censuses provide an opportunity to understand diversification processes in woody plant communities. Based on the climatic or geographic filtering hypotheses associated with tropical niche conservatism and dispersal limitation, we analysed phylogenetic community structures across a wide range of biomes and evaluated to what extent region‐specific processes have influenced large‐scale diversity patterns of tree species communities across latitude or continent.

Location

Global.

Methods

We generated a data set of species abundances for 21,379 angiosperm woody plants in 843 plots worldwide. We calculated net relatedness index (NRI) for each plot, based on a single global species pool and regional species pools, and phylogenetic β‐diversity (PBD) between plots. Then, we explored the correlations of NRI with climatic and geographic variables, and clarified phylogenetic dissimilarity along geographic and climatic differences. We also compared these patterns for South America, Africa, the Indo‐Pacific, Australia, the Nearctic, Western Palearctic and Eastern Palearctic.

Results

NRI based on a global‐scale species pool was negatively associated with precipitation and positively associated with Quaternary temperature change. PBD was positively associated with geographic distance and precipitation difference between plots across tropical and extratropical biomes. Moreover, phylogenetic dissimilarity was smaller in extratropical regions than in regions including the tropics, although temperate forests of the Eastern Palearctic showed a greater dissimilarity within extratropical regions.

Conclusions

Our findings support predictions of the climatic and geographic filtering hypotheses. Climatic filtering (climatic harshness and paleoclimatic change) relative to tropical niche conservatism played a role in sorting species from the global species pool and shaped the large‐scale diversity patterns, such as the latitudinal gradient observed across continents. Geographic filtering associated with dispersal limitation substantially contributed to regional divergence of tropical/extratropical biomes among continents. Old, long‐standing geographic barriers and recent climatic events differently influenced evolutionary diversification of angiosperm tree communities in tropical and extratropical biomes.  相似文献   

8.
Yu  Terborgh  Potts 《Ecology letters》1998,1(3):193-199
We examine several features of Hubbell’s nonequilibrium, or “null”, model of tree dynamics, which holds that species-rich tropical tree communities are maintained on a local scale by a balance of extinction and immigration, and on a global scale by a balance of extinction and speciation. All species are held to be ecologically equivalent, such that species having equal initial abundances have equal probabilities of extinction or fixation. We show here that the null model is not robust to relaxation of the assumption of ecological equivalence. Recently, 32 ; J. Theor. Biol. 188: 361–367) showed that persistence times decrease when unequal colonization rates are allowed, but their results still permit very long persistence times in stands of hundreds of thousands of stems or more. We extend their work by allowing tree mortality rates to differ across species, as is seen in all natural tree communities. As a result, persistence times drop dramatically, and forest composition becomes highly deterministic, such that long-lived species drop out of the community much more slowly than short-lived species. We also note that the use of tree deaths (instead of years) as a measure of time inflates estimates of persistence times. In summary, calculated persistence times of tropical tree species, even those in very large stands, no longer reach time scales plausible for speciation.  相似文献   

9.
A major goal of research in ecology and evolution is to explain why species richness varies across habitats, regions, and clades. Recent reviews have argued that species richness patterns among regions and clades may be explained by "ecological limits" on diversity over time, which are said to offer an alternative explanation to those invoking speciation and extinction (diversification) and time. Further, it has been proposed that this hypothesis is best supported by failure to find a positive relationship between time (e.g., clade age) and species richness. Here, I critically review the evidence for these claims, and propose how we might better study the ecological and evolutionary origins of species richness patterns. In fact, ecological limits can only influence species richness in clades by influencing speciation and extinction, and so this new "alternative paradigm" is simply one facet of the traditional idea that ecology influences diversification. The only direct evidence for strict ecological limits on richness (i.e., constant diversity over time) is from the fossil record, but many studies cited as supporting this pattern do not, and there is evidence for increasing richness over time. Negative evidence for a relationship between clade age and richness among extant clades is not positive evidence for constant diversity over time, and many recent analyses finding no age-diversity relationship were biased to reach this conclusion. More comprehensive analyses strongly support a positive age-richness relationship. There is abundant evidence that both time and ecological influences on diversification rates are important drivers of both large-scale and small-scale species richness patterns. The major challenge for future studies is to understand the ecological and evolutionary mechanisms underpinning the relationships between time, dispersal, diversification, and species richness patterns.  相似文献   

10.
Western Amazonia is known to harbour some of Earth's most diverse forests, but previous floristic analyses have excluded peatland forests which are extensive in northern Peru and are among the most environmentally extreme ecosystems in the lowland tropics. Understanding patterns of tree species diversity in these ecosystems is important both for quantifying beta‐diversity in this region, and for understanding determinants of diversity more generally in tropical forests. Here we explore patterns of tree diversity and composition in two peatland forest types – palm swamps and peatland pole forests – using 26 forest plots distributed over a large area of northern Peru. We place our results in a regional context by making comparisons with three other major forest types: terra firme forests (29 plots), white‐sand forests (23 plots) and seasonally‐flooded forests (11 plots). Peatland forests had extremely low (within‐plot) alpha‐diversity compared with the other forest types that were sampled. In particular, peatland pole forests had the lowest levels of tree diversity yet recorded in Amazonia (20 species per 500 stems, Fisher's alpha 4.57). However, peatland pole forests and palm swamps were compositionally different from each other as well as from other forest types in the region. Few species appeared to be peatland endemics. Instead, peatland forests were largely characterised by a distinctive combination of generalist species and species previously thought to be specialists of other habitats, especially white‐sand forests. We suggest that the transient nature and extreme environmental conditions of Amazonian peatland ecosystems have shaped their current patterns of tree composition and diversity. Despite their low alpha‐diversity, the unique combination of species found in tree communities in Amazonian peatlands augment regional beta‐diversity. This contribution, alongside their extremely high carbon storage capacity and lack of protection at national level, strengthens their status as a conservation priority.  相似文献   

11.
Aim The Southern African orchid flora is taxonomically well known, but the biogeographical and diversity patterns have not yet been analysed. In particular, we want to establish whether (a) it is, like the Southern African flora in general, more diverse than would be expected from its latitude and area; (b) it is an African flora, or whether it contains palaeoendemic relicts of a Gondwanan orchid flora; (c) the diversity and endemism in the orchid flora is concentrated in particular biomes and habitat types; and (d) the patterns of endemism in the flora can be accounted for by current environmental parameters, or whether we need to invoke historical explanations. Location Southern Africa. Methods We used the recent floristic account of the Southern African orchids, in conjunction with a data base of over 14,642 herbarium records, to assign the species and subspecies of Southern African orchids to biomes, habitats, and clades. We explored the relationship between the number and endemism of entities (species, subspecies and varieties) and the biomes and habitats. We compared the richness of this flora with that of 31 other regions from all continents and latitudes, to establish whether the Southern African orchid flora is richer or poorer than expected. We assigned the Southern African orchid species to 16 monophyletic clades and mapped the global distribution of these clades to establish the continental affinities of the flora. Main conclusions The Southern African orchid flora is not any more diverse than could be expected from its latitude or area, while the two tropical African floras included were less diverse than expected. Latitude is an excellent predictor of regional orchid species richness; this might indicate that available habitat is more important for orchid diversity than gross area available, since latitude is probably correlated with the extent of suitable habitat. The Southern African orchid flora is clearly an African flora, since all clades are also found in tropical Africa, while many of them are absent from the Americas or Asia. Conversely, while most African orchid clades are also found in Southern Africa, both the Americas and Asia contain many clades absent from Africa. The distribution of orchid entities among the biomes in Southern Africa is very uneven, with two of the seven biomes totally devoid of orchids. Habitats and biomes that have no equivalent in tropical Africa are high in endemism, and habitats and biomes which are also well developed in tropical Africa are low in endemism. Endemism appears largely explained in terms of modern habitats. However, two patterns (the high endemism in the Succulent Karoo and the lack of endemism in the southern Cape among epiphytic orchids) may also be explained in terms of Quaternary climatic changes.  相似文献   

12.
The unified neutral theory of biodiversity and biogeography provides a promising framework that can be used to integrate stochastic and ecological processes operating in ecological communities. Based on a mechanistic non‐neutral model that incorporates density‐dependent mortality, we evaluated the deviation from a neutral pattern in tree species abundance distributions and explored the signatures of historical and ecological processes that have shaped forest biomes. We compiled a dataset documenting species abundance distributions in 1168 plots encompassing 16 973 tree species across tropical, temperate, and boreal forests. We tested whether deviations from neutrality of species abundance distributions vary with climatic and historical conditions, and whether these patterns differ among regions. Non‐neutrality in species abundance distributions was ubiquitous in tropical, temperate, and boreal forests, and regional differences in patterns of non‐neutrality were significant between biomes. Species abundance evenness/unevenness caused by negative density‐dependent or abiotic filtering effects had no clear macro‐scale climatic drivers, although temperature was non‐linearly correlated with species abundance unevenness on a global scale. These findings were not significantly biased by heterogeneity of plot data (the differences of plot area, measurement size, species richness, and the number of individuals sampled). Therefore, our results suggest that environmental filtering is not universally increasing from warm tropical to cold boreal forests, but might affect differently tree species assembly between and within biomes. Ecological processes generating particularly dominant species in local communities might be idiosyncratic or region‐specific and may be associated with geography and climate. Our study illustrates that stochastic dynamical models enable the analysis of the interplay of historical and ecological processes that influence community assemblies and the dynamics of biodiversity.  相似文献   

13.
Understanding the patterns of biodiversity through time and space is a challenging task. However, phylogeny‐based macroevolutionary models allow us to account and measure many of the processes responsible for diversity buildup, namely speciation and extinction. The general latitudinal diversity gradient (LDG) is a well‐recognized pattern describing a decline in species richness from the equator polewards. Recent macroecological studies in ectomycorrhizal (EM) fungi have shown that their LDG is shifted, peaking at temperate rather than tropical latitudes. Here we investigate this phenomenon from a macroevolutionary perspective, focusing on a well‐sampled group of edible EM mushrooms from the genus Amanita—the Caesar's mushrooms, which follow similar diversity patterns. Our approach consisted in applying a suite of models including (1) nontrait‐dependent time‐varying diversification (Bayesian analysis of macroevolutionary mixtures [BAMM]), (2) continuous trait‐dependent diversification (quantitative‐state speciation and extinction [QuaSSE]), and (3) diversity‐dependent diversification. In short, results give strong support for high speciation rates at temperate latitudes (BAMM and QuaSSE). We also find some evidence for different diversity‐dependence thresholds in “temperate” and “tropical” subclades, and little differences in diversity due to extinction. We conclude that our analyses on the Caesar's mushrooms give further evidence of a temperate‐peaking LDG in EM fungi, highlighting the importance and the implications of macroevolutionary processes in explaining diversity gradients in microorganisms.  相似文献   

14.
The structure, function, and ecosystem services of tropical forest depend on its species richness, diversity, dominance, and the patterns of changes in the assemblages of tree populations over time. Long-term data from permanent vegetation plots have yielded a wealth of data on the species diversity and dynamics of tree populations, but such studies have only rarely been undertaken in tropical forest landscapes that support large human populations. Thus, anthropogenic drivers and their impacts on species diversity and community structure of tropical forests are not well understood. Here we present data on species diversity, community composition, and regeneration status of tropical forests in a human-dominated landscape in the Western Ghats of southern India. Enumeration of 40 plots (50 m × 20 m) results a total of 106 species of trees, 76 species of saplings and 79 species of seedlings. Detrended Correspondence Analysis ordination of the tree populations yielded five dominant groups, along disturbance and altitudinal gradients on the first and second axes respectively. Abundant species of the area such as Albizia amara, Nothopegia racemosa and Pleiospermum alatum had relatively few individuals in recruiting size classes. Our data indicate probable replacement of rare, localized, and old-growth ‘specialists’ by disturbance-adapted generalists, if the degradation is continuing at the present scale.  相似文献   

15.
Aim To quantify the influences of forest area, shape and isolation on tree species diversity in Ghana and to compare their significance with the influences of climate (average annual rainfall) and disturbance (fire burn, logging, agriculture). Location The forest zone of southern Ghana, West Africa (between 5 and 8° N). Methods For twenty‐two forest fragments (1) bivariate regression analyses of tree species diversity (number and composition) were employed with forest spatial geometry, climate and disturbance variables. (2) Multivariate regression analyses of tree species number and all seven environmental variables were used to determine the variability in tree species number that could be accounted for by these environmental variables. Results Forest area, shape and isolation accounted for sharply decreasing proportions of variability in tree species diversity. Large forest fragments contained the greatest numbers of tree species and the highest proportions of rare tree species; irregular fragments had high proportions of regenerating, light‐demanding pioneers and mature, animal‐dispersed species and isolated fragments were floristically similar to less isolated fragments. Fire burn and average annual rainfall accounted for small, but nevertheless significant, proportions of variability in tree species diversity. Logging and agriculture were non‐significant variables. Main conclusions (1) Forest area is the most important consideration when planning tropical forest reserves. (2) Management of disturbance should take priority over management of forest shape if higher levels of tree diversity and species quality are to be maintained. (3) If new reserves are to be designated, they should be located within different climatic zones in order to capture a large fraction of the regional biota. (4) Biogeographers have an important role to play in formulating and testing hypotheses at a broad spatial scale and ultimately, informing conservation management within the tropical biome.  相似文献   

16.
Several cases of high species diversity, for example in tropical rain forests, imply that speciation has been frequent or rapid. However, how speciation could proceed so frequently as to generate extraordinary diversity still remains unsolved, despite recent advancements of diverse theories of allopatric and sympatric speciation. This paper presents a theoretical model that demonstrates the process of frequent speciation by means of geographical fragmentation. We focus on allopatric speciation and explore the evolutionary effect of fragmentation and extinction of demes (subpopulations) in a widespread species or species group. After a large contagious population of a single species is fragmented into demes, extinction of some demes could result in isolation of multiple demes. Thus, several demes could become good species simultaneously through the process of allopatric speciation. We apply the random extinction method to this fragmentation process where demes become randomly extinct. The present model illustrates that frequent speciation could occur in communities where large environmental changes frequently take place.  相似文献   

17.
Why are there more species in the tropics than in temperate regions? In recent years, this long-standing question has been addressed primarily by seeking environmental correlates of diversity. But to understand the ultimate causes of diversity patterns, we must also examine the evolutionary and biogeographic processes that directly change species numbers (i.e., speciation, extinction, and dispersal). With this perspective, we dissect the latitudinal diversity gradient in hylid frogs. We reconstruct a phylogeny for 124 hylid species, estimate divergence times and diversification rates for major clades, reconstruct biogeographic changes, and use ecological niche modeling to identify climatic variables that potentially limit dispersal. We find that hylids originated in tropical South America and spread to temperate regions only recently (leaving limited time for speciation). There is a strong relationship between the species richness of each region and when that region was colonized but not between the latitudinal positions of clades and their rates of diversification. Temperature seasonality seemingly limits dispersal of many tropical clades into temperate regions and shows significant phylogenetic conservatism. Overall, our study illustrates how two general principles (niche conservatism and the time-for-speciation effect) may help explain the latitudinal diversity gradient as well as many other diversity patterns across taxa and regions.  相似文献   

18.
Santa Rosalia revisited: Why are there so many species of bacteria?   总被引:18,自引:0,他引:18  
The diversity of bacteria in the world is very poorly known. Usually less than one percent of the bacteria from natural communities can be grown in the laboratory. This has caused us to underestimate bacterial diversity and biased our view of bacterial communities. The tools are now available to estimate the number of bacterial species in a community and to estimate the difference between communities. Using what data are available, I have estimated that thirty grams of forest soil contains over half a million species. The species difference between related communities suggests that the number of species of bacteria may be more than a thousand million. I suppose that the explanation for such a large number of bacterial species is simply that speciation in bacteria is easy and extinction difficult, giving a rate of speciation higher than the rate of extinction, leading to an ever increasing number of species over time. The idea that speciation is easy is justified from the results of recent experimental work in bacterial evolution.  相似文献   

19.
The resource-use hypothesis proposed by E.S. Vrba predicts that specialist species have higher speciation and extinction rates than generalists because they are more susceptible to environmental changes and vicariance. In this work, we test some of the predictions derived from this hypothesis on the 197 extant and recently extinct species of Ruminantia (Cetartiodactyla, Mammalia) using the biomic specialization index (BSI) of each species, which is based on its distribution within different biomes. We ran 10000 Monte Carlo simulations of our data in order to get a null distribution of BSI values against which to contrast the observed data. Additionally, we drew on a supertree of the ruminants and a phylogenetic likelihood-based method (QuaSSE) for testing whether the degree of biomic specialization affects speciation rates in ruminant lineages. Our results are consistent with the predictions of the resource-use hypothesis, which foretells a higher speciation rate of lineages restricted to a single biome (BSI = 1) and higher frequency of specialist species in biomes that underwent high degree of contraction and fragmentation during climatic cycles. Bovids and deer present differential specialization across biomes; cervids show higher specialization in biomes with a marked hydric seasonality (tropical deciduous woodlands and schlerophyllous woodlands), while bovids present higher specialization in a greater variety of biomes. This might be the result of divergent physiological constraints as well as a different biogeographic and evolutionary history.  相似文献   

20.
Analyses of richness and endemism of Cyatheales (tree ferns) in tropical America were performed and evidence of a diversity gradient is presented. For this, the occurrence ranges of 239 species were plotted into a 5° × 5° grid-cell map and then analyzed using species richness and endemism indices. Here we show that species richness and endemism are not distributed randomly over the landscape, but do aggregate into defined regions of high diversity in tropical America: the northern Andes, lower Central America, upper Central America and Mexico, the Guyana Highlands, southeastern Brazil, and the Antilles. These distributional patterns are congruent with the geographical distribution of cloud forest, which in turn is determined by topography, high humidity, and persistent cloud immersion. The mountain regions of tropical America, especially the cloud forests, harbour most of the species of American Cyatheales and have high levels of habitat loss and climatic fragility. Conservation policies for Cyatheales are centred on the local use and trade of many tree fern species, but none such policies focus on cloud forest habitat loss. This makes tree ferns a critically endangered group of plants. In the face of the current environmental crisis and global climate change, the presence of Cyatheales in these regions sounds the alarm on their conservation priorities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号