首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 838 毫秒
1.
Skeletal muscle responses to lower limb suspension in humans.   总被引:8,自引:0,他引:8  
Eight subjects participated in a 6-wk unilateral lower limb suspension (ULLS) study to determine the influence of reduced weight bearing on human skeletal muscle morphology. The right shoe was outfitted with a platform sole that prevented the left foot from bearing weight while walking with crutches, yet it allowed freedom of movement about the ankle, knee, and hip. Magnetic resonance images pre- and post-ULLS showed that thigh muscle cross-sectional area (CSA) decreased (P less than 0.05) 12% in the suspended left lower limb, whereas right thigh muscle CSA did not change. Likewise, magnetic resonance images collected post-ULLS showed that muscle CSA was 14% smaller (P less than 0.05) in the left than in the right leg. The decrease in muscle CSA of the thigh was due to a twofold greater response of the knee extensors (-16%, P less than 0.05) than knee flexors (-7%, P less than 0.05). The rectus femoris muscle of the knee extensors showed no change in CSA, whereas the three vastus muscles showed similar decreases of approximately 16% (P less than 0.05). The apparent atrophy in the leg was due mainly to reductions in CSA of the soleus (-17%) and gastrocnemius muscles (-26%). Biopsies of the left vastus lateralis pre- and post-ULLS showed a 14% decrease (P less than 0.05) in average fiber CSA. The decrease was evident in both type I (-12%) and II (-15%) fibers. The number of capillaries surrounding the different fiber types was unchanged after ULLS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
There is evidence that immobilization causes a decrease in total collagen synthesis in skeletal muscle within a few days. In this study, early immobilization effects on the expression of prolyl 4-hydroxylase (PH) and the main fibrillar collagens at mRNA and protein levels were investigated in rat skeletal muscle. The right hindlimb was immobilized in full plantar flexion for 1, 3, and 7 days. Steady-state mRNAs for alpha- and beta-subunits of PH and type I and III procollagen, PH activity, and collagen content were measured in gastrocnemius and plantaris muscles. Type I and III procollagen mRNAs were also measured in soleus and tibialis anterior muscles. The mRNA level for the PH alpha-subunit decreased by 49 and 55% (P < 0.01) in gastrocnemius muscle and by 41 and 39% (P < 0.05) in plantaris muscle after immobilization for 1 and 3 days, respectively. PH activity was decreased (P < 0.05-0.01) in both muscles at days 3 and 7. The mRNA levels for type I and III procollagen were decreased by 26-56% (P < 0.05-0.001) in soleus, tibialis anterior, and plantaris muscles at day 3. The present results thus suggest that pretranslational downregulation plays a key role in fibrillar collagen synthesis in the early phase of immobilization-induced muscle atrophy.  相似文献   

3.
Effect of reinnervation on collagen synthesis in rat skeletal muscle.   总被引:3,自引:0,他引:3  
The effect of reinnervation on the activities of prolyl 4-hydroxylase (PH) and galactosylhydroxylysyl glucosyltransferase (GGT), both enzymes of collagen biosynthesis, and on the concentration of hydroxyproline (Hyp) was studied in gastrocnemius, soleus, and tibialis anterior muscles of rat 19, 26, 40, and 61 days after crush denervation of the sciatic nerve. The GGT activity was elevated in denervated gastrocnemius and soleus muscles and the PH activity in gastrocnemius. Muscular Hyp concentration was increased in denervated tibialis anterior muscle. Both the PH and GGT activities and the Hyp concentration returned to the control level during the reinnervation period (19-61 days from the start of denervation). It seems that denervation atrophy of skeletal muscle is associated with an increased rate of muscular collagen biosynthesis and that during reinnervation collagen synthesis rate decreases despite accelerated muscular growth. The results thus suggest that innervation is a powerful suppressive regulator of muscular collagen biosynthesis.  相似文献   

4.
Glucose transport is regarded as the principal rate control step governing insulin-stimulated glucose utilization by skeletal muscle. To assess this step in human skeletal muscle, quantitative PET imaging of skeletal muscle was performed using 3-O-methyl-[11C]glucose (3-[11C]OMG) in healthy volunteers during a two-step insulin infusion [n = 8; 30 and 120 mU.min(-1).m(-2), low (LO) and high (HI)] and during basal conditions (n = 8). Positron emission tomography images were coregistered with MRI to assess 3-[11C]OMG activity in regions of interest placed on oxidative (soleus) compared with glycolytic (tibialis anterior) muscle. Insulin dose-responsive increases of 3-[11C]OMG activity in muscle were observed (P < 0.01). Tissue activity was greater in soleus than in tibialis anterior (P < 0.05). Spectral analysis identified that two mathematical components interacted to shape tissue activity curves. These two components were interpreted physiologically as likely representing the kinetics of 3-[11C]OMG delivery from plasma to tissue and the kinetics of bidirectional glucose transport. During low compared with basal, there was a sixfold increase in k3, the rate constant attributed to inward glucose transport, and another threefold increase during HI (0.012 +/- 0.003, 0.070 +/- 0.014, 0.272 +/- 0.059 min(-1), P < 0.001). Values for k3 were similar in soleus and tibialis anterior, suggesting similar kinetics for transport, but compartmental modeling indicated a higher value in soleus for k1, denoting higher rates of 3-[11C]OMG delivery to soleus than to tibialis anterior. In summary, in healthy volunteers there is robust dose-responsive insulin stimulation of glucose transport in skeletal muscle.  相似文献   

5.
This study tested that hypothesis that skeletal muscle within a year of spinal cord injury (SCI) would respond to intermittent high force loading by showing an increase in size. Three males about 46 weeks post clinically complete SCI underwent surface electrical stimulation of their left or right m. quadriceps femoris 2 days per week for 8 weeks to evoke 4 sets of ten isometric or dynamic actions each session. Conditioning increased average cross-sectional area of m. quadriceps femoris, assessed by magnetic resonance imaging, by 20+/-1% (p = 0.0103). This reversed 48 weeks of atrophy such that m. quadriceps femoris 54 weeks after SCI was the same size as when the patients were first studied 6 weeks after injury. The results suggest that skeletal muscle is remarkably responsive to intermittent, high force loading after almost one year of little if any contractile activity.  相似文献   

6.
The goal of this study was to compare the effects of electrical stimulation using pulsed current (PC) and premodulated interferential current (IC) on prevention of muscle atrophy in the deep muscle layer of the calf. Rats were randomly divided into 3 treatment groups: control, hindlimb unloading for 2 weeks (HU), and HU plus electrical stimulation for 2 weeks. The animals in the electrical stimulation group received therapeutic stimulation of the left (PC) or right (IC) calf muscles twice a day during the unloading period. Animals undergoing HU for 2 weeks exhibited significant loss of muscle mass, decreased cross-sectional area (CSA) of muscle fibers, and increased expression of ubiquitinated proteins in the gastrocnemius and soleus muscles compared with control animals. Stimulation with PC attenuated the effects on the muscle mass, fiber CSA, and ubiquitinated proteins in the gastrocnemius muscle. However, PC stimulation failed to prevent atrophy of the deep layer of the gastrocnemius muscle and the soleus muscle. In contrast, stimulation with IC inhibited atrophy of both the gastrocnemius and soleus muscles. In addition, the IC protocol inhibited the HU-induced increase in ubiquitinated protein expression in both gastrocnemius and soleus muscles. These results suggest that electrical stimulation with IC is more effective than PC in preventing muscle atrophy in the deep layer of limb muscles.  相似文献   

7.
This study examined the influence of spinal cord injury (SCI) onaffected skeletal muscle. The right vastus lateralis muscle wasbiopsied in 12 patients as soon as they were clinically stable (average6 wk after SCI), and 11 and 24 wk after injury. Samples were also takenfrom nine able-bodied controls at two time points 18 wk apart. Surfaceelectrical stimulation (ES) was applied to the left quadriceps femorismuscle to assess fatigue at these same time intervals. Biopsies wereanalyzed for fiber type percent and cross-sectional area (CSA), fibertype-specific succinic dehydrogenase (SDH) and -glycerophosphatedehydrogenase (GPDH) activities, and myosin heavy chainpercent. Controls showed no change in any variable overtime. Patients showed 27-56% atrophy(P = 0.000) of type I, IIa, andIIax+IIx fibers from 6 to 24 wk after injury, resulting in fiber CSAapproximately one-third that of controls. Their fiber type specific SDHand GPDH activities increased (P  0.001) from 32 to 90% over the 18 wk, thereby approaching or surpassing control values. The relative CSA of type I fibers and percentage of myosin heavy chain type I did not change. There wasapparent conversion among type II fiber subtypes; type IIa decreasedand type IIax+IIx increased (P  0.012). Force loss during ES did not change over time for either groupbut was greater (P = 0.000) for SCIpatients than for controls overall (27 vs. 9%). The results indicatethat vastus lateralis muscle shows marked fiber atrophy, no change inthe proportion of type I fibers, and a relative independence ofmetabolic enzyme levels from activation during the first 24 wk afterclinically complete SCI. Over this time, quadriceps femoris muscleshowed moderately greater force loss during ES in patients than incontrols. It is suggested that the predominant response of mixed humanskeletal muscle within 6 mo of SCI is loss of contractile protein.Therapeutic interventions could take advantage of this to increasemuscle mass.

  相似文献   

8.
9.
Objective: To understand the role of hyperinsulinemia in intramyocellular (imc) triglyceride (TG) accumulation and in regulating imcTG turnover. Research Methods and Procedures: imcTG was first prelabeled by continuous infusion of [U‐14C]glycerol (pulse), and then the rate of label loss from the prelabeled imcTG pool (turnover) in gastrocnemius, tibialis anterior, and soleus muscle of awake, high‐fat‐fed obese rats during the subsequent hyperinsulinemic‐euglycemic clamp experiments (chase) was determined. Results: Post‐absorptive basal fractional imcTG turnover rate in soleus was 0.010 ± 0.001/min, significantly lower than that in gastrocnemius (0.026 ± 0.002/min, p < 0.001) or tibialis anterior (0.030 ± 0.002/min, p < 0.0001), a pattern reciprocal to their imcTG pool size. Insulin infusion at 25 pmol/kg per minute resulted in pathophysiological hyperinsulinemia (5‐fold increase over the baseline value). This caused an increase in imcTG turnover by 3‐fold in soleus (0.029 ± 0.006/min, p = 0.002) but a decrease in gastrocnemius (0.012 ± 0.003/min, p = 0.001) and in tibialis anterior (0.0064 ± 0.001/min, p < 0.0001). Pathophysiological hyperinsulinemia suppressed hormone‐sensitive lipase activity in heart (p = 0.01) and mesenteric fat (p = 0.05) but not in skeletal muscle (p > 0.05). The pool size of imcTG was not affected by hyperinsulinemia. Discussion: The results demonstrated muscle‐type dependence in the response of imcTG turnover to hyperinsulinemia in the obesity model. The reciprocal insulin effects on imcTG turnover in oxidative vs. oxidative‐glycolytic muscle indicated a possibility that oxidative muscle contributes more to insulin resistance under hyperinsulinemia if imcTG‐fatty acid oxidation is a function of turnover. imcTG turnover does not seem to regulate imcTG pool size acutely.  相似文献   

10.
A proteomic analysis was performed comparing normal slow twitch type fiber rat soleus muscle and normal fast twitch type fiber tibialis anterior muscle to immobilized soleus and tibialis anterior muscles at 0.5, 1, 2, 4, 6, 8 and 10 days post immobilization. Muscle mass measurements demonstrate mass changes throughout the period of immobilization. Proteomic analysis of normal and atrophied soleus muscle demonstrated statistically significant changes in the relative levels of 17 proteins. Proteomic analysis of normal and atrophied tibialis anterior muscle demonstrated statistically significant changes in the relative levels of 45 proteins. Protein identification using mass spectrometry was attempted for all differentially regulated proteins from both soleus and tibialis anterior muscles. Four differentially regulated soleus proteins and six differentially regulated tibialis anterior proteins were identified. The identified proteins can be grouped according to function as metabolic proteins, chaperone proteins, and contractile apparatus proteins. Together these data demonstrate that coordinated temporally regulated changes in the proteome occur during immobilization-induced atrophy in both slow twitch and fast twitch fiber type skeletal muscle.  相似文献   

11.
已往的研究对于实验室应用的各种啮齿类动物,如大鼠和小鼠骨骼肌蛋白表达的特性已有报道.然而,至今不清楚其它啮齿类动物如野生鼠骨骼肌蛋白的表达或性双态性的特征,而这些野生鼠的行为学、形态学及生理学特点均已有报道.已知骨骼肌的肌球蛋白重链(MHC)成分与其功能特性有关.我们研究了草原田鼠的肱三头肌、胫骨前肌、腓肠肌和比目鱼肌MHC蛋白表达的性别特性.应用SDS聚丙烯酰胺凝胶电泳法测定MHC Ⅰ型、Ⅱa型、Ⅱd/x和Ⅱb型的蛋白表达相对含量.结果表明:与雌鼠相比,雄鼠的比目鱼肌湿重较大,胫骨前肌的MHC Ⅱa蛋白量表达较高.未见骨骼肌重量及MHC蛋白表达含量在雌雄鼠间的性别差异.血中睾酮的浓度差异可能不影响外周骨骼肌蛋白的表达特性.然而,与过去在大鼠、兔和小鼠中的已报道的结果相比,草原田鼠骨骼肌MHC的表达显示了更多异质性.推测这可能与草原田鼠和其它小型哺乳类动物生存的自然环境和功能需要有关.  相似文献   

12.
The role of the renin-angiotensin system (RAS) in vasoregulation is well established, but a localized RAS exists in multiple tissues and exerts diverse functions including autonomic control and thermogenesis. The role of the RAS in the maintenance and function of skeletal muscle is not well understood, especially the role of angiotensin peptides, which appear to contribute to muscle atrophy. We tested the hypothesis that mice lacking the angiotensin type 1A receptor (AT(1A)(-/-)) would exhibit enhanced whole body and skeletal muscle function and improved regeneration after severe injury. Despite 18- to 20-wk-old AT(1A)(-/-) mice exhibiting reduced muscle mass compared with controls (P < 0.05), the tibialis anterior (TA) muscles produced a 25% higher maximum specific (normalized) force (P < 0.05). Average fiber cross-sectional area (CSA) and fiber oxidative capacity was not different between groups, but TA muscles from AT(1A)(-/-) mice had a reduced number of muscle fibers as well as a higher proportion of type IIx/b fibers and a lower proportion of type IIa fibers (P < 0.05). Measures of whole body function (grip strength, rotarod performance, locomotor activity) were all improved in AT(1A)(-/-) mice (P < 0.05). Surprisingly, the recovery of muscle mass and fiber CSA following myotoxic injury was impaired in AT(1A)(-/-) mice, in part by impaired myoblast fusion, prolonged collagen infiltration and inflammation, and delayed expression of myogenic regulatory factors. The findings support the therapeutic potential of RAS inhibition for enhancing whole body and skeletal muscle function, but they also reveal the importance of RAS signaling in the maintenance of muscle mass and for normal fiber repair after injury.  相似文献   

13.
The effect of progressive, low-intensity endurance training on regulatory enzyme activities in slow-twitch (ST) and fast-twitch (FT) muscle fibres was studied in 32 rats. Of those rats 16 were trained on a treadmill at a running speed of 10m · min–1 5 days a week over an 8-week period. Running time was progressively increased from 15 min to 2 h · day–1. Of the rats 4 trained and 4 sedentary rats were also subjected to acute exhausting exercise. Enzyme activities of phosphofructokinase 1 (PFKI) from glycolysis, -ketoglutarate dehydrogenase (-KGDH) from the Krebs cycle and carnitine palmitoyltransferase (CPT I and II) from fatty acid metabolism in soleus, tibialis anterior and gastrocnemius muscles were measured in trained and sedentary rats. Enzyme activities of individual ST and FT fibres were measured from the freeze-dried gastrocnemius muscle of 8 trained and 8 sedentary rats. In the sedentary rats the activity of PFK1 in tibialis anterior and soleus muscles was 141% and 41% of the activity in gastrocnemius muscle, respectively. The activity of -KGDH in tibialis anterior and soleus muscles was 164% and 278% of the activity in gastrocnemius muscle, respectively. The activity of CPT I in tibialis anterior and gastrocnemius muscles were at the same level, but in soleus muscle the activity was 127% of that in mixed muscle. Endurance training increased enzyme activities of -KGDH and CPT I significantly (P < 0.05) in gastrocnemius muscle but not in soleus or tibialis anterior muscle. After training both -KGDH and CPT II activities were elevated significantly (P < 0.05) in the ST fibres of gastrocnemius muscle, whereas in FT fibres only -KGDH was increased. For PFK1 activity no significant change was observed in ST or FT fibres. After acute exercise, activities of mitochondrial enzymes -KGDH and CPT I tended to be elevated in all muscles. Thus, low-intensity endurance training induced significant peripheral changes in regulatory enzyme activities in oxidative and fatty acid metabolism in individual ST or FT muscle fibres.  相似文献   

14.
Hindlimb unloading of rats results in a diminished ability of skeletal muscle arterioles to constrict in vitro and elevate vascular resistance in vivo. The purpose of the present study was to determine whether alterations in the mechanical environment (i.e., reduced fluid pressure and blood flow) of the vasculature in hindlimb skeletal muscles from 2-wk hindlimb-unloaded (HU) rats induces a structural remodeling of arterial microvessels that may account for these observations. Transverse cross sections were used to determine media cross-sectional area (CSA), wall thickness, outer perimeter, number of media nuclei, and vessel luminal diameter of feed arteries and first-order (1A) arterioles from soleus and the superficial portion of gastrocnemius muscles. Endothelium-dependent dilation (ACh) was also determined. Media CSA of resistance arteries was diminished by hindlimb unloading as a result of decreased media thickness (gastrocnemius muscle) or reduced vessel diameter (soleus muscle). ACh-induced dilation was diminished by 2 wk of hindlimb unloading in soleus 1A arterioles, but not in gastrocnemius 1A arterioles. These results indicate that structural remodeling and functional adaptations of the arterial microvasculature occur in skeletal muscles of the HU rat; the data suggest that these alterations may be induced by reductions in transmural pressure (gastrocnemius muscle) and wall shear stress (soleus muscle).  相似文献   

15.
Heart failure is often characterized by skeletal muscle atrophy. The mechanisms underlying muscle wasting, however, are not fully understood. We studied 30 Dahl salt-sensitive rats (10 male, 20 female) fed either a high-salt (HS; n = 15) or a low-salt (LS; n = 15) diet. This strain develops cardiac hypertrophy and failure when fed a HS diet. LS controls were matched to HS rats for gender and duration of diet. Body mass, food intake, and muscle mass and composition were measured. Skeletal muscle protein synthesis was measured by isotope dilution. An additional group of 27 rats (HS, n = 16; LS; n = 11) were assessed for expression of genes regulating protein breakdown and apoptosis. Gastrocnemius and plantaris muscles weighed less (16 and 22%, respectively) in HS than in LS rats (P < 0.01). No differences in soleus or tibialis anterior weights were found. Differences in muscle mass were abolished after data were expressed relative to body size, because HS rats tended (P = 0.094) to weigh less. Lower body mass in HS rats was related to a 16% reduction (P < 0.01) in food intake. No differences in muscle protein or DNA content, the protein-to-DNA ratio, or muscle protein synthesis were found. Finally, no differences in skeletal muscle gene expression were found to suggest increased protein breakdown or apoptosis in HS rats. Our results suggest that muscle wasting in this model of heart failure is not associated with alterations in skeletal muscle metabolism. Instead, muscle atrophy was related to reduced body weight secondary to decreased food intake. These findings argue against the notion that heart failure is characterized by a skeletal muscle myopathy that predisposes to atrophy.  相似文献   

16.
With increasing survival rates in people with spinal cord injuries (SCI), detection and prevention of metabolic and cardiovascular disease have become increasingly important. Few studies have evaluated in vivo mitochondrial function in paralyzed skeletal muscle. The purpose of this study was to compare oxidative muscle metabolism using the rate of phosphocreatine (PCr) resynthesis measured by magnetic resonance spectroscopy (MRS) in people with SCI and able-bodied (AB) controls. Eight subjects with complete SCI (American Spinal Injury Association Impairment Scale A, levels T3-T12, injury duration 2-13 years) were compared with 12 AB controls. T1-weighted (1)H MR images of the thigh were taken to identify skeletal muscle. Phosphorous MRS was performed with a 13 × 13-cm(2) surface coil placed on the right vastus lateralis in a 3 Tesla clinical MRI scanner. PCr resynthesis was measured after electrical stimulation for 60 s at 4 Hz in SCI and AB and in AB subjects after 39 s of voluntary isometric contractions. Resting metabolites were not different between SCI and AB, except for an elevated phosphodiester peak. PCr recovery was slower in AB subjects using electrical stimulation compared with voluntary exercise (28.4 ± 6.1 vs. 41.5 ± 4.3 s; P < 0.05). PCr recovery rates and calculated muscle maximum oxidative capacity in SCI were both 52% of electrically stimulated AB (P < 0.001). In vivo oxidative metabolism was reduced in paralyzed muscle to a similar extent as seen in people with mitochondrial myopathies and heart failure.  相似文献   

17.
The purpose of this study was to determine whether the proportion of skeletal muscle in the fat-free soft tissue mass (FFST) is the same in men with spinal cord injury (SCI) and able-bodied controls. Skeletal muscle mass and FFST of the midthigh were determined by using magnetic resonance imaging and dual-energy X-ray absorptiometry, respectively, in men with long-term (>2 yr) complete SCI (n = 8) and able-bodied controls of similar age, height, and weight (n = 8). Muscle mass (1.36 +/- 0.77 vs. 2.44 +/- 0.47 kg) and FFST (1.70 +/- 0.94 vs. 2.73 +/- 0.80 kg) were lower in the SCI group than in the controls (P < 0.05), but the lower ratio of muscle to FFST in the SCI group (0.80 +/- 0.09 vs. 0.91 +/- 0.10, P < 0.05) suggested that they had a lower proportion of muscle in the FFST than in controls. This notion was supported by analysis of covariance, in that the mean muscle adjusted to the mean FFST of the groups combined was lower in the SCI group. Despite the lower proportion of muscle in the FFST of the SCI group, the relation between muscle and FFST was strong in the SCI group (r = 0.99) and controls (r = 0.96). The findings suggest a disproportionate loss of muscle in the paralyzed thighs after SCI relative to other nonfat constituents, which may be accurately estimated in men with long-term SCI by dual-energy X-ray absorptiometry if the lower proportion of muscle in the FFST (approximately 15%) is taken into account.  相似文献   

18.
The objective of this study was to determine the functional recovery and adaptation of dystrophic muscle to multiple bouts of contraction-induced injury. Because lengthening (i.e., eccentric) contractions are extremely injurious for dystrophic muscle, it was considered that repeated bouts of such contractions would exacerbate the disease phenotype in mdx mice. Anterior crural muscles (tibialis anterior and extensor digitorum longus) and posterior crural muscles (gastrocnemius, soleus, and plantaris) from mdx mice performed one or five repeated bouts of 100 electrically stimulated eccentric contractions in vivo, and each bout was separated by 10-18 days. Functional recovery from one bout was achieved 7 days after injury, which was in contrast to a group of wild-type mice, which still showed a 25% decrement in electrically stimulated isometric torque at that time point. Across bouts there was no difference in the immediate loss of strength after repeated bouts of eccentric contractions for mdx mice (-70%, P = 0.68). However, after recovery from each bout, dystrophic muscle had greater torque-generating capacity such that isometric torque was increased ~38% for both anterior and posterior crural muscles at bout 5 compared with bout 1 (P < 0.001). Moreover, isolated extensor digitorum longus muscles excised from in vivo-tested hindlimbs 14-18 days after bout 5 had greater specific force than contralateral control muscles (12.2 vs. 10.4 N/cm(2), P = 0.005) and a 20% greater maximal relaxation rate (P = 0.049). Additional adaptations due to the multiple bouts of eccentric contractions included rapid recovery and/or sparing of contractile proteins, enhanced parvalbumin expression, and a decrease in fiber size variability. In conclusion, eccentric contractions are injurious to dystrophic skeletal muscle; however, the muscle recovers function rapidly and adapts to repeated bouts of eccentric contractions by improving strength.  相似文献   

19.
Carnosine is found in high concentrations in skeletal muscles, where it is involved in several physiological functions. The muscle carnosine content measured within a population can vary by a factor 4. The aim of this study was to further characterize suggested determinants of the muscle carnosine content (diet, gender and age) and to identify new determinants (plasma carnosinase activity and testosterone). We investigated a group of 149 healthy subjects, which consisted of 94 men (12 vegetarians) and 55 women. Muscle carnosine was quantified in M. soleus, gastrocnemius and tibialis anterior using magnetic resonance proton spectroscopy and blood samples were collected to determine CNDP1 genotype, plasma carnosinase activity and testosterone concentrations. Compared to women, men have 36, 28 and 82% higher carnosine concentrations in M. soleus, gastrocnemius and tibialis anterior muscle, respectively, whereas circulating testosterone concentrations were unrelated to muscle carnosine levels in healthy men. The carnosine content of the M. soleus is negatively related to the subjects’ age. Vegetarians have a lower carnosine content of 26% in gastrocnemius compared to omnivores. In contrast, there is no difference in muscle carnosine content between omnivores with a high or low ingestion of β-alanine. Muscle carnosine levels are not related to the polymorphism of the CNDP1 gene or to the enzymatic activity of the plasma carnosinase. In conclusion, neither CNDP1 genotype nor the normal variation in circulating testosterone levels affects the muscular carnosine content, whereas vegetarianism, female gender and increasing age are the factors associated with reduced muscle carnosine stores.  相似文献   

20.
Obesity and cigarette smoking independently constitute major preventable causes of morbidity and mortality and obesity is known to worsen lung inflammation in asthma. Paradoxically, higher body mass index (BMI) is associated with reduced mortality in smoking induced COPD whereas low BMI increases mortality risk. To date, no study has investigated the effect of a dietary-induced obesity and cigarette smoke exposure on the lung inflammation and loss of skeletal muscle mass in mice. Male BALB/c mice were exposed to 4 cigarettes/day, 6 days/week for 7 weeks, or sham handled. Mice consumed either standard laboratory chow (3.5 kcal/g, 12% fat) or a high fat diet (HFD, 4.3 kcal/g, 32% fat). Mice exposed to cigarette smoke for 7 weeks had significantly more inflammatory cells in the BALF (P<0.05) and the mRNA expression of pro-inflammatory cytokines and chemokines was significantly increased (P<0.05); HFD had no effect on these parameters. Sham- and smoke-exposed mice consuming the HFD were significantly heavier than chow fed animals (12 and 13%, respectively; P<0.05). Conversely, chow and HFD fed mice exposed to cigarette smoke weighed 16 and 15% less, respectively, compared to sham animals (P<0.05). The skeletal muscles (soleus, tibialis anterior and gastrocnemius) of cigarette smoke-exposed mice weighed significantly less than sham-exposed mice (P<0.05) and the HFD had no protective effect. For the first time we report that cigarette smoke exposure significantly decreased insulin-like growth factor-1 (IGF-1) mRNA expression in the gastrocnemius and tibialis anterior and IGF-1 protein in the gastrocnemius (P<0.05). We have also shown that cigarette smoke exposure reduced circulating IGF-1 levels. IL-6 mRNA expression was significantly elevated in all three skeletal muscles of chow fed smoke-exposed mice (P<0.05). In conclusion, these findings suggest that a down-regulation in local IGF-1 may be responsible for the loss of skeletal muscle mass following cigarette smoke exposure in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号