首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucose utilization in isolated pancreatic islets of the rat was inhibited by prostaglandin (PG) E2 and the alpha 2 adrenoceptor agonist, clonidine, to a similar extent; other prostaglandins did not affect glucose utilization. Islet oxidation of [1-14C]glucose and [6-14C]glucose demonstrated that the pentose phosphate shunt was inhibited by PGE2 and clonidine. Pertussis toxin antagonizes the effects of clonidine and PGE2 on total glucose utilization and pentose phosphate shunt activity. The results suggest that PGE2 and alpha 2 adrenoceptor agonists may regulate glucose metabolism through similar transduction mechanisms, and that a guanine nucleotide binding regulatory (G) protein modulates certain metabolic effects of prostaglandins and adrenergic agonists.  相似文献   

2.
A single intravenous injection of alloxan in mice induced hyperglycemia in a dose dependent fashion. This diabetogenic action of alloxan was prevented by a single intraperitoneal injection of the alpha 2-adrenergic agonists, i.e. oxymetazoline, clonidine or epinephrine 40 min prior to the injection of alloxan. The alpha 1-adrenergic agonists, i.e. methoxamine and phenylephrine, and a beta-adrenergic agonist, isoproterenol, failed to prevent the diabetogenic action of alloxan. The inhibitory effect of clonidine on alloxan-induced diabetes was antagonized by yohimbine or phentolamine, but not by prazosin. Although alpha 2-adrenergic agonists caused a transient hyperglycemia at the time of alloxan administration (40 min after the administration of alpha 2-adrenergic agonists), the plasma glucose level at the time of alloxan injection did not correlate with the anti-diabetogenic effect of alpha 2-adrenergic agents. These results clearly demonstrate that the alpha 2-adrenergic mechanism which inhibits insulin release from pancreatic B cells prevented the diabetogenic action of alloxan in mice.  相似文献   

3.
Insulin release in response to glucose was measured after culture of islets from ob/ob-mice in a Ca2+-deficient medium. The stimulatory effect of 20 mM glucose disappeared after addition of 1 microM L-epinephrine, and it was reversed into inhibition when the medium contained 0.1 to 10 microM clonidine. Glucose inhibited insulin release also after activation of the alpha 2-adrenoceptors with B-HT 933, whereas blocking of these receptors with idazoxan removed glucose inhibition in the presence of clonidine. It is concluded that alpha 2-adrenergic activation provides an efficient means of unmasking the inhibitory component in the action of glucose on insulin release.  相似文献   

4.
Oxidation of [14C] glucose in isolated epididymal adipocytes from Golden hamsters was stimulated by isoproterenol, epinephrine and norepinephrine, which all interact with beta-adrenergic receptors and by adrenocorticotrophic hormone. In contrast alpha-receptor agonists, such as phenylephrine, methoxamine or clonidine did not increase basal glucose oxidation. The beta-adrenergic blocking drug propranolol inhibited both lipolysis and glucose oxidation when these had been stimulated by isoproterenol, epinephrine or norepinephrine. Conversely, the alpha-adrenergic blocking drugs phentolamine and phenoxybenzamine did not influence lipolysis or glucose oxidation when isoproterenol provided the stimulus and increased both lipolysis and glucose metabolism in the present of either epinephrine or norepinephrine. All alpha-adrenergic agonists tested (phenylephrine, methoxamine and clonidine) lowered lipolysis and glucose oxidation isolated adipocytes exposed to isoproterenol. However, when adrenocorticotropin provided the stimulus for glucose oxidation and lipolysis, only clonidine produced a significant reduction in lipolysis and glucose oxidation. None of the alpha-agonists influenced glucose metabolism which had been increased by insulin. These data confirm the presence of both alpha and beta adrenergic receptors on hamster epididymal adipocytes and suggest that they exert antagonistic influences on lipolysis and glucose oxidation. These data are also consistent with the view that adrenergic stimulation of glucose oxidation and lipolysis in adipocytes are both mediated through beta receptors.  相似文献   

5.
Effects of the alpha 2-adrenergic agonist clonidine on insulin release, membrane potential, and cytoplasmic free Ca2+ concentration ([Ca2+]i) were investigated using pancreatic beta-cells isolated from obese hyperglycemic mice. Addition of 2 microM clonidine promptly inhibited glucose-stimulated insulin release, an effect accompanied by a lowering in both membrane potential and [Ca2+]i. Within minutes, the effect on Ca2+ was partly reversed, [Ca2+]i attaining a new level, although still significantly lower than in the absence of agonist. This late increase in [Ca2+]i was inhibited by 50 microM D-600, a blocker of voltage-activated Ca2+ channels. The inhibitory effects of clonidine on membrane potential, [Ca2+]i, and insulin release were abolished by 5 microM of the alpha 2-adrenergic antagonist yohimbine. Depolarization with high K+ increased [Ca2+]i also in the presence of clonidine, conditions accompanied by only a minute release of insulin. Secretion was, however, partly restored by subsequent addition of 20 mM glucose. Addition of 5 mM Ca2+ transiently reversed the effects of clonidine on both membrane potential and [Ca2+]i. Although the clonidine-induced repolarization should be enough for closing the voltage-activated Ca2+ channels with a resulting decrease in [Ca2+]i, a direct interaction of the agonist with these channels cannot be excluded. The fact that it was possible to increase [Ca2+]i with only a minor effect on insulin release suggests that the inhibitory effect of clonidine not only is due to a reduction in [Ca2+]i, but also involves interference with some more distal step in the insulin secretory machinery.  相似文献   

6.
The adrenergic agonists octopamine, tyramine and clonidine inhibited the normal pheromonotropic action due to PBAN (pheromone biosynthesis activating neuropeptide) in incubations of intersegmental tissues that are situated between the 8th and 9th abdominal segments of the moth ovipositor tip. This inhibition was reversed in the presence of the adrenergic antagonists phentolamine, yohimbine and chlorpromazine. Incubations of 8th segments alone, which do not produce pheromone, resulted in elevated levels of intracellular cAMP in the presence of octopamine. The physiological significance of this phenomenon is unclear. However, clonidine (an alpha(2) selective agonist) did not duplicate octopamine stimulation of intracellular cAMP in 8th segment cultures. In intersegmental membrane cultures clonidine successfully duplicated the octopamine inhibition of both pheromone and intracellular cAMP production. The physiological significance of octopaminergic receptors mediating the inhibitory response of intersegments was investigated by experiments in vivo. When PBAN was injected into photophase females the normal pheromonotropic activity due to the injected PBAN dropped after 2h. In the presence of clonidine, normal peak stimulatory levels were never attained and a faster decline was observed. Clonidine also inhibited the pheromonotropic response of 24h-decapitated females to PBAN. Adrenergic antagonists successfully reversed the inhibitory effect of clonidine in decapitated females, but did not reverse the effect of clonidine in photophase females. In addition, when clonidine was injected into female moths during the scotophase normal peak pheromone titers were reduced although no effect on calling behavior was observed. Copyright 1997 Elsevier Science Ltd. All rights reserved  相似文献   

7.
The aim of this study was to define the role of the alpha-adrenergic receptor in the regulation of lipolysis by human adipocytes. Glycerol production by isolated human adipocytes was stimulated by the pure beta-adrenergic agonist isoproterenol in a dose-dependent fashion. This stimulation of lipolysis was inhibited by the alpha-adrenergic agonists methoxamine, phenylephrine, and clonidine. Epinephrine-stimulated lipolysis was potentiated by the alpha-adrenergic antagonists, dihydroergocryptine, phentolamine, phenoxybenzamine, and yohimbine. Whereas the attenuation of beta-adrenergic agonist-stimulated lipolysis by alpha-adrenergic agonists was reversed completely by the alpha 2-adrenergic antagonist yohimbine, the alpha 1-antagonist prazosin did not reverse such attenuation. It is concluded that alpha-adrenergic agonists act as antilipolytic agents in human adipocytes and that this action may result from the interaction of these compounds with a population of alpha 2-adrenergic receptors.  相似文献   

8.
In order to investigate the specificity of noradrenergic effects on Na+, K+-ATPase, we infused noradrenergic agonists into the cerebral ventricles of rats, with or without depletion of forebrain norepinephrine. Infusion of norepinephrine, isoproterenol, or phenylephrine increased ouabain binding in intact rats, whereas clonidine infusion decreased binding. Depletion of forebrain norepinephrine by destruction of the dorsal noradrenergic bundle reduced ouabain binding. Norepinephrine infusion reversed the effect of dorsal bundle lesion; isoproterenol and phenylephrine increased ouabain binding in lesioned rats, but did not restore the effect of the lesions. Clonidine had no effect in lesioned rats. Effects on Na+, K+-ATPase activity were similar, but smaller. These results suggest that stimulation of both alpha 1- and beta-noradrenergic receptors may be necessary for optimal Na+, K+-ATPase, and that clonidine reduces Na+, K+-ATPase indirectly through decreased norepinephrine release.  相似文献   

9.
Noradrenaline (NA) and the alpha 2-adrenergic agonists clonidine, BHT-920, and UK 14304-18 inhibit potassium-evoked release of [3H]NA from rat occipital cortex tissue chops with similar potencies. NA (10(-5) M) was most effective as up to 85% inhibition could be observed compared with 75%, 55%, and 35% for UK 14304-18, clonidine, and BHT-920, respectively, all at 10(-5) M. Potassium-evoked release was enhanced by both forskolin (10(-5) M) and 1 mM dibutyryl cyclic AMP. Pretreatment of tissue chops with 1 mM dibutyryl cyclic AMP in the presence of 3-isobutyl-1-methylxanthine partially reversed the alpha 2-adrenergic agonist inhibition of NA release. No reversal of inhibition was observed following pretreatment with 10(-5) M forskolin. The effects of clonidine, BHT-920, UK-14308-18, and NA on cyclic AMP formation stimulated by (a) forskolin, (b) isoprenaline, (c) adenosine, (d) potassium, and (e) NA were examined. Only cAMP formation stimulated by NA was inhibited by these alpha 2-adrenergic agonists. These results suggest that only a small fraction of adenylate cyclase in rat occipital cortex is coupled to alpha 2-adrenergic receptors. These results are discussed in relation to recent findings that several alpha 2-adrenergic receptor subtypes occur, not all of which are coupled to the inhibition of adenylate cyclase, and that alpha 2-adrenergic receptors inhibit NA release in rat occipital cortex by a mechanism that does not involve decreasing cyclic AMP levels.  相似文献   

10.
Arginine vasopressin (AVP) increases water permeability in the collecting duct of the nephron via activation of adenylyl cyclase. Alpha-2 (alpha2) agonists inhibit AVP-stimulated water permeability via binding to alpha2 adrenoceptors that have been divided into 3 subtypes- alpha2A, alpha2B, and alpha2C. Some biological effects mediated by alpha2 agonists result from nonadrenergic imidazoline receptors that exist in the rat kidney. Thus, alpha2-inhibition of AVP-stimulated water permeability in the rat collecting duct could be caused by imidazoline receptors. The purpose of this study was to test agonists and antagonists selective for alpha2 and imidazoline receptors on AVP-stimulated water permeability in the rat inner medullary collecting duct (IMCD). Some experiments were conducted where water permeability was stimulated by a nonhydrolyzable analog of adenosine 3', 5'-cyclic monophosphate (cAMP). Agonists included dexmedetomidine, clonidine, oxymetazoline, agmatine and rilmenidine. The latter two are selective imidazoline agonists. Antagonists included yohimbine, RX821002, atipamezole, prazosin, WB4101, idazoxan, and BU239. Prazosin and WB4101 demonstrate selectivity for the alpha2B and alpha2C subtypes, respectively, and oxymetazoline and RX821002 are selective for the alpha2A subtype. BU239 is selective for imidazoline receptors. Wistar rat terminal IMCDs were isolated and perfused to determine the osmotic water permeability coefficient (Pf). All agonists except agmatine inhibited AVP-stimulated Pf. Inhibition by rilmenidine indicated a different mechanism of action from other agonists. Dose-response data show dexmedetomidine to be the most potent inhibitor. Oxymetazoline and clonidine inhibited cAMP-stimulated Pf indicating that the mechanism involves postcAMP cellular events. It was reported previously that dexmedetomidine inhibits cAMP-stimulated Pf (1). All antagonists except prazosin and WB4101 reversed alpha2-inhibition of AVP-stimulated Pf. BU239 was effective at 1 microM but not at 100 nM. Results suggest that alpha2A adrenoceptors modulate water permeability in the IMCD. The involvement of imidazoline receptors is inconclusive.  相似文献   

11.
Contractile responses to single or cumulative doses of alpha-adrenoceptor agonists were compared in the tail artery and the saphenous vein of the rat. In the rat tail artery, there were no differences in the dose-response relationships to noradrenaline, methoxamine, and KCl whether the agonists were applied as single or cumulative doses. However, the responses to single doses of clonidine and B-HT 920 were significantly larger than similar doses applied cumulatively. In the rat saphenous vein, responses to single doses of noradrenaline, clonidine, and B-HT 920 were also significantly larger than the corresponding cumulative doses. However, there was no difference in the responses to KCl. It was suggested that desensitization of alpha 2-adrenoceptors in these vessels may result in the diminished responses to cumulative doses of the agonists. Desensitization appeared to be specific to alpha 2-adrenoceptors, since the effect was not observed in responses mediated by the alpha 1-adrenoceptors and KCl.  相似文献   

12.
The present study confirmed our previous assumption on the crucial role of central alpha2B-like adrenoceptor subtype in gastric mucosal defense. It was found that beside clonidine, rilmenidine, an alpha2/imidazoline receptor agonist and ST-91, an alpha2B-adrenoceptor preferring agonist inhibited the mucosal lesions induced by ethanol given intracerebroventricularly (i.c.v.). The ED50 values for clonidine, rilmenidine and ST-91 are 0.2, 0.01 and 16 nmol/rat i.c.v., respectively. The effect was reversed by the intracerebroventricularly injected alpha2B/2C-adrenoceptor antagonists prazosin and ARC-239, indicating the potential involvement of central alpha2B/2C-adrenoceptor subtype in the protective action. The gastroprotective effect of adrenoceptor stimulants was reversed by bilateral cervical vagotomy, suggesting that vagal nerve is likely to convey the central action to the periphery. In gastric mucosa both nitric oxide and prostaglandins may mediate the centrally-induced effect, since both indomethacin and N(G)-nitro-L-arginine reversed the protective effect of alpha2-adrenergic stimulants. Though expression of mRNA of alpha2B-, as well as alpha2A- and alpha2C-adrenoceptor subtypes was demonstrated in gastric mucosa of the rat, the hydrophilic ST-91, given peripherally (orally, subcutaneously), failed to exert mucosal protection, in contrast with clonidine and rilmenidine which were also effective. Consequently, while peripheral alpha2B-adrenoceptors are not likely to be involved in gastric mucosal protection, activation of central alpha2B-like adrenoceptor subtype may initiate a chain of events, which result in a vagal dependent gastroprotective action.  相似文献   

13.
Isolated guinea pig ileal longitudinal muscle was stimulated transmurally with a frequency of 0.1 Hz, duration of 0.5 msec, and supramaximal voltage (80-100 V). Transmural stimulation induces ileal contractions via activation of cholinergic neurons. alpha 2-Adrenergic agonists block the response to transmural stimulation via activation of prejunctional alpha 2 receptors which inhibit release of acetylcholine from cholinergic nerve terminals. Urapidil has been reported to have alpha 2-agonistic actions, and therefore was compared to the prototypic alpha 2 agonists, clonidine and B-HT 920. Clonidine and B-HT 920 depressed responses to transmural stimulation in the guinea pig ileum. Clonidine was the most potent inhibitor of the contractions, followed closely by B-HT 920. Very high concentrations of urapidil were necessary to suppress nerve-induced contractions of the ileum. The effects of clonidine and B-HT 920, but not urapidil, were antagonized by the selective alpha 2 antagonist, yohimbine. In unstimulated preparations, in which exogenous acetylcholine was used to elicit contractions of the ileum, urapidil depressed the response while clonidine and B-HT 920 had no effect. When PGF1 alpha was used to contract the ileum, no inhibitory effects were noted for urapidil, clonidine, or B-HT 920. Therefore urapidil, only in high concentrations, inhibits the contraction to transmural stimulation by depressing the response at a postjunctional cholinergic site. No evidence was found that urapidil can act as an agonist at a prejunctional alpha 2-receptor site.  相似文献   

14.
In several systems, alpha 2-adrenoreceptor agonists and neuropeptide Y (NPY) potentiate one another. We reported recently that NPY is a potent depressor agent in the nucleus tractus solitarii (NTS). The purpose of this study is to investigate the possible modulation of the agonist effect by NPY in this site. Microinjection (60nl) of NPY, anti-NPY antiserum, the alpha 2 agonist alpha-methylnorepinephrine (alpha-MNE), clonidine, and the alpha 2 antagonists idazoxan and yohimbine were made into the NTS. Administration of idazoxan (0.2 nmol) prior to the injection of NPY (2.3 pmol) attenuated the potent depressor and bradycardic effect of NPY. There was a similar attenuation of yohimbine's effect. Similarly, prior administration of the anti-NPY antiserum attenuated the depressor effect of the central antihypertensive agents, alpha-MNE and clonidine, whereas inactivated antiserum or control normal rabbit serum were not able to attenuate these effects. Even a subdepressor dose of NPY (47 fmol) could potentiate the effect of alpha-MNE. These results demonstrate a reciprocal potentiation of NPY and alpha 2 agonists in the brainstem, and suggest that NPY and catecholamines interact in central cardiovascular regulation.  相似文献   

15.
The effects of the alpha 1-adrenergic agonist methoxamine and the alpha 2-adrenergic agonist clonidine on isoproterenol stimulated adenylate cyclase activity were examined in plasma membranes prepared from female human subcutaneous adipose tissue. It was found that in the presence of 10 microM GTP and 100 mM NaCl increasing concentrations of both agonists inhibited basal and isoproterenol-stimulated adenylate cyclase activity. The inhibitory action of 5 x 10(-7) M clonidine could not be overcome by increasing concentrations of isoproterenol. These results suggest both alpha 1- and alpha 2-adrenergic agonists inhibit beta-agonist-stimulated adenylate cyclase activity in human adipose tissue.  相似文献   

16.
We investigated the role of cyclic AMP (cAMP) in alpha 2- and possible beta-adrenergic regulation of arylalkylamine-N-acetyltransferase (NAT), the penultimate enzyme in the biosynthesis of melatonin. The study was performed on primary cultures of dispersed chick pineal cells. Electron microscopy indicated that approximately 70% of the dispersed cells were modified photoreceptors. A similar proportion of melatoninergic cells was detected by immunocytochemical labeling of hydroxyindole-O-methyltransferase, the final enzyme in the biosynthesis of melatonin. Adrenergic agonists caused a sustained 50% inhibition of forskolin-augmented cAMP levels and NAT activity, with an alpha 2-adrenergic potency order of UK 14,304 greater than or equal to clonidine greater than norepinephrine greater than phenylephrine. Noradrenergic inhibition of 3-isobutyl-1-methylxanthine-augmented cAMP levels and NAT activity was reversed by yohimbine (an alpha 2-adrenergic antagonist) but not by prazosin (an alpha 1-adrenergic antagonist). The alpha-adrenergic inhibition of cAMP accumulation and NAT activity was prevented by pertussis toxin. Addition of propranolol (a beta-adrenergic antagonist) was necessary to observe an inhibitory effect of norepinephrine on cAMP levels but not on NAT activity. Similarly, the beta-adrenergic agonist isoproterenol transiently increased cAMP levels but did not affect NAT activity. The data indicate that the alpha 2-adrenergic inhibition of NAT activity in chick pineal cells is strongly correlated with an inhibition of cAMP accumulation. The lack of beta-adrenergic effect on NAT suggests that beta-adrenoceptors might be on a subset of cells that do not produce melatonin or that the beta-adrenergic-induced increase in cAMP levels is too transient to affect NAT.  相似文献   

17.
Postsynaptic alpha-adrenoceptors in the rat tail artery have been examined by determining the pA2 values for antagonists against several alpha-adrenoceptor agonists. In this tissue the alpha-adrenoceptor agonists all produce concentration-dependent mechanical responses with the following rank order of potency: clonidine greater than norepinephrine greater than phenylephrine greater than UK 14304 greater than B-HT 920. Antagonism by prazosin and yohimbine of phenylephrine, norepinephrine, and clonidine responses does not reveal the anticipated discrimination between alpha 1- and alpha 2-adrenoceptors. Thus, pA2 values for prazosin (9.1-9.5), yohimbine (7.2-7.4), and corynanthine (7.0-7.1) and idazoxan (7.6) do not show large differences between these receptor agonists and suggests the predominance of alpha 1-adrenoceptor mediated contractile responses in this preparation. Significant differences between antagonist activities (pA2 values) in Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) artery preparations have not been observed. The sensitivity sequence of alpha-adrenoceptor agonist-induced responses to nifedipine and D 600 is B-HT 920 greater than clonidine greater than phenylephrine greater than norepinephrine. Dependence of agonist response upon extracellular Ca2+ parallels the sensitivity to Ca2+ channel antagonists. Sensitivity to D 600 of phenylephrine responses increased with decreasing concentration of phenylephrine or with receptor blockade by phenoxybenzamine: sensitivity of responses to B-HT 920 was not affected by these procedures. Tail artery strips from WKY and SHR do not exhibit major differences in sensitivity to D 600 or to Ca2+ depletion. Bay k 8644, a Ca2+ channel activator, produces concentration-dependent mechanical responses in the tail artery in the presence of modestly elevated K+ concentrations (10-15 mM): these actions of elevated K+ can be mimicked by both alpha 1- and alpha 2-adrenoceptor agonists including methoxamine, St 587, UK 14304, and clonidine. These studies do not provide clear evidence for the existence of discrete postsynaptic alpha 1- and alpha 2-adrenoceptor populations in rat tail artery as indicated by pA2 values or Ca2+ dependence of response.  相似文献   

18.
The effect of intracerebroventricular (i.c.v.) injection of the alpha 2-adrenoceptor agonists clonidine and B-HT 920 on mean arterial pressure (MAP), heart rate (HR), and plasma concentrations of noradrenaline and adrenaline was examined in conscious unrestrained rats. The injection of 1.0 microgram clonidine significantly decreased MAP and slightly decreased HR. Plasma noradrenaline and adrenaline levels were slightly but not significantly decreased after the injection of 1 microgram clonidine. In contrast, the injection of 0.1-10.0 micrograms B-HT 920 increased MAP and decreased HR. Plasma noradrenaline and adrenaline levels were slightly increased after the injection of the 1- and 10-micrograms doses. The i.c.v. injection of the alpha 2-antagonist rauwolscine slightly but not significantly increased MAP and plasma noradrenaline and adrenaline levels. The responses to i.c.v. injection of clonidine and B-HT 920 were not changed by prior administration of rauwolscine. Neither the pressor response to B-HT 920 nor the depressor response to clonidine was abolished by rauwolscine, suggesting that neither response was mediated by alpha 2-adrenoceptors.  相似文献   

19.
The adrenergic inhibition of lipogenesis and stimulation of lipolysis in the avian has been examined using chicken hepatocytes and adipose tissue explants in vitro. Lipogenesis was inhibited by adrenergic agonists: epinephrine (alpha + beta) greater than isoproterenol (beta 1/beta 2) greater than norepinephrine (alpha 1/alpha 2, beta 1) greater than metaproterenol (beta 2), phenylephrine (alpha 1). Dobutamine (beta 1 agonist) and dopamine (dopaminergic agonist) did not significantly affect [14C]acetate incorporation into lipid, while clonidine and para-aminoclonidine (alpha 2 agonists) were slightly stimulatory. Lipolysis in young and adult chicken adipose tissue was stimulated by epinephrine, isoproterenol, phenylephrine, dobutamine and metaproterenol, but was inhibited by clonidine and para-aminoclonidine. Both the antilipogenic and lipolytic effects of epinephrine were partially blocked by phentolamine (alpha 1 = alpha 2 antagonist) or propranolol (beta 1 = beta 2 antagonist), but completely inhibited by phentolamine and propranolol administered together.  相似文献   

20.
Administration of purified pertussis toxin to rats induced persistent tachycardia, (observed in conscious rats but not after pithing); as little as 0.05 microgram/100 g produced a significant effect. Pertussis toxin-treatment did not affected the pressor response produced in the pithed rats by the alpha 2-adrenergic agonist methoxamine but markedly diminished the pressor effect of the alpha 2-adrenergic agonists clonidine and azepexole. A role of adenylate cyclase inhibition in the action of postsynaptic vascular alpha 2-adrenergic receptors is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号