首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tropical ecosystems are globally important for bird diversity. In many tropical regions, land‐use intensification has caused conversion of natural forests into human‐modified habitats, such as secondary forests and heterogeneous agricultural landscapes. Despite previous research, the distribution of bird communities in these forest‐farmland mosaics is not well understood. To achieve a comprehensive understanding of bird diversity and community turnover in a human‐modified Kenyan landscape, we recorded bird communities at 20 sites covering the complete habitat gradient from forest (near natural forest, secondary forest) to farmland (subsistence farmland, sugarcane plantation) using point counts and distance sampling. Bird density and species richness were on average higher in farmland than in forest habitats. Within forest and farmland, bird density and species richness increased with vegetation structural diversity, i.e., were higher in near natural than in secondary forest and in subsistence farmland than in sugarcane plantations. Bird communities in forest and farmland habitats were very distinct and very few forest specialists occurred in farmland habitats. Moreover, insectivorous bird species declined in farmland habitats whereas carnivores and herbivores increased. Our study confirms that tropical farmlands can hardly accommodate forest specialist species. Contrary to most previous studies, our findings show that structurally rich tropical farmlands hold a surprisingly rich and distinct bird community that is threatened by conversion of subsistence farmland into sugarcane plantations. We conclude that conservation strategies in the tropics must go beyond rain forest protection and should integrate structurally heterogeneous agroecosystems into conservation plans that aim at maintaining the diverse bird communities of tropical forest‐farmland mosaics.  相似文献   

2.
Environmental correlates of avian diversity in lowland Panama rain forests   总被引:1,自引:0,他引:1  
Aim The composition of communities is known to be influenced by biogeographical history, but also by local environmental conditions. Yet few studies have evaluated the relative importance of the direct and indirect effects of multiple factors on species diversity in rich Neotropical forests. Our study aims to assess drivers of change in local bird species richness in lowland tropical rain forests. Location Thirty‐two physiographic subregions along the corridor of the Panama Canal, Panama. Methods We mapped the distributions of all forest‐dwelling bird species and quantified the environmental characteristics of all subregions, including mean annual rainfall, topographic complexity, elevational variability, forest age and forest area. Plant species richness, believed to be correlated with structural complexity, was estimated by interpolation through kriging for subregions where data were unavailable. Results The study region has a strong rainfall gradient across a short distance (65 km), which is also accompanied by steep gradients in plant and bird species diversity. Path analysis showed that precipitation strongly affected plant species diversity, which in turn affected avian diversity. Forest age and topography affected bird diversity independently of plant diversity. Forest area and its proportion occurring in the largest two fragments of each subregion (habitat configuration) were also positive correlates of bird species richness. Main conclusions Our results suggest that plant species richness, known to be influenced in part by biogeographical history and geology, also affects bird species assemblages locally. We provide support for the hypothesis that bird species richness increases with structural complexity of the habitat. Our analysis of the distributions of the region's most disturbance‐sensitive bird species showed that subregions with more rainfall, more complex topography and older forests harboured not only richer communities but also more sensitive species; while subregions with the opposite characteristics usually lacked large fractions of the regional forest bird community and hosted only common, widely distributed species. Results also emphasize the importance of preserving forest diversity from habitat loss and fragmentation, and confirm that larger, continuous forest tracts are necessary to maintain the rich avian diversity in the region.  相似文献   

3.
Å. Berg 《Bird Study》2013,60(2):153-165
CapsuleThe amount of forest (at local and landscape scales) and occurrence of residual habitats at the local scale are shown to be the major factors influencing bird community composition in farmland–forest landscapes in central Sweden.

Aims To investigate the importance of local habitat and landscape structure for breeding birds in farmland–forest landscapes in central Sweden.

Methods Breeding birds were censused at 292 points. A detailed habitat mapping was made within 300 m of the points. Within a 300–600 m radius only two major habitats (forests and arable fields) were identified.

Results Cluster analyses of bird communities identified three site types that also differed in habitat composition: (i) partially forested sites in forested landscapes; (ii) heterogeneous sites with residual habitats in mosaic landscapes; and (iii) field-dominated farmland sites in open landscapes. A total of 19 of 25 farmland bird species (restricted to farmland or using both farmland and forest) had the highest abundance in farmland sites with mosaics of forest and farmland, while only six farmland species had the highest abundance in field-dominated sites. The bird community changed from being dominated by farmland species to being dominated by forest species (common in forest landscapes without farmland) at small proportions (10–20%) of forest at the local scale. A major difference in habitat composition between heterogeneous and field-dominated sites was the occurrence of different residual habitats (e.g. shrubby areas and seminatural grasslands). These habitats seemed to influence bird community composition more than land-use, despite covering <10% of the area. Seminatural grasslands were important for bird community composition and species-richness, but grazing seemed to be less important. Among different land-use types, cereal crops were the least preferred fields. Set-asides with tall vegetation and short rotation coppices were positively associated with species-richness of farmland birds.

Conclusion In general, the composition of the landscape was important for bird community composition, although amount and distribution of forests, occurrence of residual habitats and land-use of fields at the local scale had the strongest influence on bird community composition. The possible implications of these patterns for managing farmland–forest landscapes are discussed.  相似文献   

4.
Relationship between avian range limits and plant transition zones in Maine   总被引:1,自引:0,他引:1  
Aim To determine if vegetation complexity associated with transition zones may be a contributing factor affecting bird species distributions in Maine, USA, and in increased numbers of bird species at about 45° north latitude in northeastern North America. Location Maine, USA; North America north of Mexico. Methods We delineated the ranges within Maine (86,156 km2) of 186 bird species and 240 woody plants using literature and expert review. Maps showing species richness and numbers of range limits, at 324 km2 resolution, were developed for woody plants and groups of breeding birds: forest specialists, forest generalists, and those that used barren and urban habitats, early successional areas, and wetlands or open water. Two plant transition zones for Maine were identified previously, with the north–south transition zone mapped across eastern North America. Patterns in bird distribution maps were compared to woody plant maps and to transition zones. Results When the distributions of forest specialists were compared to the north–south vegetation transition zone in Maine, they were spatially coincident, but were not for other groups. Forest specialists had more species with range limits in the state (61%) than generalists (13%) or any other group. At a continental‐scale, the vegetation transition zone within eastern North America agreed fairly well with the areas of highest bird richness. Main conclusions A bird transition zone occurs in Maine and across eastern North America, akin to and overlapping the vegetation transition zone. Seasonality is likely the primary source of the inverse gradient in bird richness in the eastern USA, as reported by others. However, vegetation structure and habitat selection at very broad spatial scales appear to contribute to the reversed gradient. North of the vegetation transition zone, forest structure is simpler and coniferous forests more dominant, and this may contribute to reduced bird species richness. However, the northern (> 49°) typical gradient in bird species richness has been related to many hypotheses, and several are likely involved in the genesis of the gradient.  相似文献   

5.
Artificial Light At Night (ALAN) is one of the most important anthropogenic environmental components that affects biodiversity worldwide. Despite extensive knowledge on ALAN, being a measure of human activity that directly impacts numerous aspects of animal behaviour, such as orientation and distribution, little is known about its effects on density distribution on a large spatial scale. That is why we decided to explore by means of the Species Distribution Modelling approach (SDM) how ALAN as one of 33 predictors determines farmland and forest bird species densities. In order to safeguard study results from any inconsistency caused by the chosen method, we used two approaches, i.e. the Generalised Additive Model (GAM) and the Random Forest (RF). Within each approach, we developed two models for two bird species, the Black woodpecker and the European stonechat: the first with ALAN, and the second without ALAN as an additional predictor. Having used out-of-bag procedures in the RF approach, information-theoretic criteria for the GAM, and evaluation models based on an independent dataset, we demonstrated that models with ALAN had higher predictive density power than models without it. The Black woodpecker definitely and linearly avoids anthropogenic activity, defined by the level of artificial light, while the European stonechat tolerates human activity to some degree, especially in farmland habitats. What is more, a heuristic analysis of predictive maps based on models without ALAN shows that both species reach high densities in regions where they are deemed rare. Hence, the study proves that urbanisation processes, which can be reflected by ALAN, are among key predictors necessary for developing Species Density Distribution Models for both farmland and forest bird species.  相似文献   

6.
Aim In this paper, we adopted a large‐scale approach to evaluate the effect of regional richness of forest birds on the number of bird species retained by forest fragments in several localities across Europe. Location We studied bird assemblages in fourteen forest archipelagos embedded in agricultural matrices from southern Norway to central Spain. Tree composition varied from oak and beech forests of the northern localities to oak and pine xerophitic woodlands of the southern ones. The number of fragments in each forest archipelago ranged from eighteen to 211. Methods We used the Gleason equation (s = a + z log A; where s and A are, respectively, the species richness and size of forest fragments and z the rate of species loss) to estimate the species richness for 1‐ and 15‐ha fragments in each archipelago. The regional richness of forest birds was estimated by modelling the geographical distribution of species richness in the European atlas of breeding birds. Results The latitudinal distribution of regional richness displayed a convex form, with the highest values being in central Europe. Along this gradient, the number of species retained by fragments and the rate of species loss was positively related to regional richness. In addition, the percentage of the regional pool of species sampled by fragments decreased in the southern localities. Main conclusions Relationships between regional richness of forest birds and richness in fragments seem to explain why fragments in central Europe shelter more species than their southern counterparts. The decreased ability of southern forest fragments to sample the regional richness of forest birds, could be explained as an effect of the low abundance of many species in the Mediterranean, which could depress their ability to prevent extinction in fragments by a rescue effect. Alternatively, high beta diversity in the Mediterranean could produce undersampling by fragments of the regional pool of species. These regional differences in the response of bird assemblages to forest fragmentation are used to discuss the usefulness of large‐scale, biogeographical approaches in the design of conservation guidelines.  相似文献   

7.
Tropical agroecosystems cover an increasingly large proportion of the Earth’s terrestrial surface. Yet, relatively little is known about the factors that influence their avifauna, especially in areas of high human population density. The potential of tropical farmland for sustaining bird biodiversity, including forest birds, can be influenced by habitat structure and the distance from the nearest forest. We investigated the effect of these two factors on the bird community in the farmland near Kakamega Forest, Kenya. Using point counts, we assessed the number of bird species and individuals on 56 study plots in distances up to about 2,100 m from the forest. We observed a total of 96 bird species in the farmland, 22 of which were forest, 58 shrub-land, and 16 open-country species. High vertical vegetation heterogeneity and a large number of woody plant individuals were related to high species richness of forest and shrub-land birds, whereas open-country birds avoided such areas. The species richness and total number of forest birds declined with increasing distance to the forest. A comparison with the bird community within Kakamega Forest indicated that only a fraction of the forest species could be sustained in the farmland. This suggests that agroecosystems with a diverse habitat structure can support a high diversity of birds, but have only a limited capacity to compensate for forest loss. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Abstract This study reports on the responses of bird assemblages to woodland clearance, fragmentation and habitat disturbance in central Queensland Australia, a region exposed to very high rates of vegetation clearance over the last two to three decades. Many previous studies of clearing impacts have considered situations where there is a very sharp management contrast between uncleared lands and cleared areas: in this situation, the contrast is more muted, because both cleared lands and uncleared savanna woodlands are exposed to cattle grazing, invasion by the exotic grass Cenchrus ciliaris and similar fire management. Bird species richness (at the scale of a 1‐ha quadrat) was least in cleared areas (8.1 species), then regrowth areas (14.6 species), then uncleared woodlands (19.9 species). Richness at this scale was unrelated to woodland fragment size, connectivity or habitat condition; but declined significantly with increasing abundance of miners (interspecifically aggressive colonial honeyeaters). At whole of patch scale, richness increased with fragment size and decreased with abundance of miners. This study demonstrates complex responses of individual bird species to a regional management cocktail of disturbance elements. Of 71 individual bird species modelled for woodland fragment sites, the quadrat‐level abundance of 40 species was significantly related to at least one variable representing environmental position (across a rainfall gradient), fragment condition, fragment size and/or connectivity. This study suggests that priorities for conservation management include: cessation of broad‐scale clearing; increased protection for regrowth (particularly where this may bolster connectivity and/or size of woodland fragments); control of miners; maintenance of fallen woody debris in woodlands; increase in fire frequency; and reduction in the incidence of grazing and exotic pasture grass.  相似文献   

9.
Species distribution models are often used to study the biodiversity of ecosystems. The modelling process uses a number of parameters to predict others, such as the occurrence of determinate species, population size, habitat suitability or biodiversity. It is well known that the heterogeneity of landscapes can lead to changes in species’ abundance and biodiversity. However, landscape metrics depend on maps and spatial scales when it comes to undertaking a GIS analysis.We explored the goodness of fit of several models using the metrics of landscape heterogeneity and altitude as predictors of bird diversity in different landscapes and spatial scales. Two variables were used to describe biodiversity: bird richness and trophic level diversity, both of which were obtained from a breeding bird survey by means of point counts. The relationships between biodiversity and landscape metrics were compared using multiple linear regressions. All of the analyses were repeated for 14 different spatial scales and for cultivated, forest and grassland environments to determine the optimal spatial scale for each landscape typology.Our results revealed that the relationships between species’ richness and landscape heterogeneity using 1:10,000 land cover maps were strongest when working on a spatial scale up to a radius of 125–250 m around the sampled point (circa 4.9–19.6 ha). Furthermore, the correlation between measures of landscape heterogeneity and bird diversity was greater in grasslands than in cultivated or forested areas. The multi-spatial scale approach is useful for (a) assessing the accuracy of surrogates of bird diversity in different landscapes and (b) optimizing spatial model procedures for biodiversity mapping, mainly over extensive areas.  相似文献   

10.
It is well known that bird richness in the Amazon is greater in upland forests and that seasonally flooded forest is particularly species poor. However, the misleading pattern of greater bird richness in seasonally flooded forest has emerged seemingly unnoticed numerous times in richness maps in the literature. We hypothesize that commission errors in digital distribution maps (DDMs) are the cause behind the misleading richness pattern. In the Amazon, commission errors are a consequence of the different methodological treatment given to large‐ranged versus small‐ranged habitat specialists when mapping distributions. DDMs of 1007 Amazonian birds were examined, and maps that had commission errors were corrected. We generated two richness maps, one from the overlay of original DDMs and another from the overlay of the corrected ones. We identified 291 species whose distribution maps had errors. In the original data, seasonally flooded forests showed higher species richness than upland forest, but this pattern was reverted in the corrected richness map. Commission errors were 35 times more likely in the seasonally flooded forest. We conclude that DDMs accurately portray the distribution of single species in the Amazon. Commission errors in individual maps, however, accumulate when they are overlaid, explaining the misleading pattern for birds in the Amazon. DDMs can continue to be used mapping richness, as long as, at a regional scale: (1) basic map refinements are carried, or (2) only small‐range species are used for mapping species richness.  相似文献   

11.
Aim  To consider the role of local colonization and extinction rates in explaining the generation and maintenance of species richness gradients at the regional scale.
Location  A Mediterranean biome (oak forests, deciduous forests, shrublands, pinewoods, firwoods, alpine heathlands, crops) in Catalonia, Spain.
Methods  We analysed the relative importance of direct and indirect effects of community size in explaining species richness gradients. Direct sampling effects of community size on species richness are predicted by Hubbell's neutral theory of biodiversity and biogeography. The greater the number of individuals in a locality, the greater the number of species expected by random direct sampling effects. Indirect effects are predicted by the abundance–extinction hypothesis, which states that in more productive sites increased population densities and reduced extinction rates may lead to high species richness. The study system was an altitudinal gradient of forest bird species richness.
Results  We found significant support for the existence of both direct and indirect effects of community size in species richness. Thus, both the neutral and the abundance–extinction hypotheses were supported for the altitudinal species richness gradient of forest birds in Catalonia. However, these mechanisms seem to drive variation in species richness only in low-productivity areas; in high-productivity areas, species richness was uncorrelated with community size and productivity measures.
Main conclusions  Our results support the existence of a geographical mosaic of community-based processes behind species richness gradients, with contrasting abundance–extinction dynamics and sampling effects in areas of low and high productivity.  相似文献   

12.
Patterns and environmental correlates of species distributions and richness are identified for Kenyan birds at a quarter degree-square scale. This information is used together with iterative complementarity analyses, which employ species richness, taxonomic dispersion and range-restrictedness, to identify priority areas for possible conservation attention. Bird species apparently not conserved by existing protected areas in Kenya are identified. Six avifaunal zones (and one transitional zone) are distinguished based on distributions of suites of bird species. Variation in biotope diversity (the number of forest and aquatic systems) accounts for 79% of the observed variation in Kenyan bird species richness. Although both rainfall and altitudinal range are significantly correlated with species richness, they only explain an additional 3% of the observed variation. The priority areas identified are situated mainly within highlands and coastal lowlands. Although few priority areas are identified in northern Kenya, this region also constitutes a priority, as it contains a suite of xeric species with habitats that are not represented elsewhere in Kenya. The papyrus yellow warbler, Chloropeta gracilirostris, William's bush lark, Mirafra williamsi, white-winged dove, Streptopelia reichenowi, and Jubaland weaver, Ploceus dichrocephalus, are identified as endemics or near-endemics that are probably not adequately conserved in Kenya at present.  相似文献   

13.
Land-use intensification is a major cause for the decline in species diversity in human-modified landscapes. The loss of functionally important species can reduce a variety of ecosystem functions, such as pollination and seed dispersal, but the intricate relationships between land-use intensity, biodiversity and ecosystem functioning are still contentious. Along a gradient from forest to intensively used farmland, we quantified bee species richness, visitation rates of bees and pollination success of wild cherry trees (Prunus avium). We analysed the effects of structural habitat diversity at a local scale and of the proportion of suitable habitat around each tree at a landscape scale. We compared these findings with those from previous studies of seed-dispersing birds and mammals in the same model system and along the same land-use gradient. Bee species richness and visitation rates were found to be highest in structurally simple habitats, whereas bird species richness—but not their visitation rates—were highest in structurally complex habitats. Mammal visitation rates were only influenced at the landscape scale. These results show that different functional groups of animals respond idiosyncratically to gradients in habitat and landscape structure. Despite strong effects on bees and birds, pollination success and bird seed removal did not differ along the land-use gradient at both spatial scales. These results suggest that mobile organisms, such as bees and birds, move over long distances in intensively used landscapes and thereby buffer pollination and seed-dispersal interactions. We conclude that measures of species richness and interaction frequencies are not sufficient on their own to understand the ultimate consequences of land-use intensification on ecosystem functioning.  相似文献   

14.
Understanding factors determining the distribution of species is a key requirement for protecting diversity in a specific area. The aim of this study was to explore the factors affecting diversity and distribution of species of birds on different forested hills in central Nepal. The area is rich in species of birds. Because the area is characterized by steep gradients, we were also interested in the importance of altitude in determining the diversity and species composition of the bird communities. We assessed bird diversity and species composition based on point observations along a gradient of increasing altitude in two valleys (Kathmandu and Palung) in central Nepal. Data on environmental variables were also collected in order to identify the main determinants of bird diversity and species composition of the bird communities. We recorded 6522 individual birds belonging to 146 species, 77 genera and 23 families. Resident birds made up 80% (117 species) of the total dataset. The study supported the original expectation that altitude is a major determinant of species richness and composition of bird communities in the area. More diverse bird communities were found also in areas with steeper slopes. This together with the positive effect of greater heterogeneity suggests that forests on steep slopes intermixed with patches of open habitats on shallow soil at large spatial scales are more important for diverse bird communities than more disturbed habitats on shallow slopes. In addition, we demonstrated that while different habitat characteristics such as presence of forests edges and shrubs play an important role in driving species composition, but they do not affect species richness. This indicates that while habitat conditions are important determinants of the distribution of specific species, the number of niches is determined by large scale characteristics, such as landscape level habitat heterogeneity and altitude. Thus, to protect bird diversity in the mid-hills of central Nepal, we should maintain diverse local habitats (viz. forest, shrubs, open land, etc.) but also make sure the natural habitats on steeper slopes with large scale heterogeneity are maintained.  相似文献   

15.
Industrial oil palm expansion has led to dramatic landscape changes that have negatively affected forest biodiversity in the tropics. In contrast to large-scale plantations, oil palm smallholdings may support greater levels of biodiversity through the implementation of multi-cropping system or polyculture. We examined bird species richness, together with community structure, conservation status, and feeding guild of existing smallholdings in Peninsular Malaysia. Based on point transect sampling, we sampled birds in 100 smallholdings that practiced either monoculture or polyculture farming. Our results revealed that bird species richness was significantly greater in monoculture smallholdings than in polyculture smallholdings, but the opposite was true for bird abundance. Non-forest birds constituted the major species of bird communities in oil palm smallholdings. However, we found that the abundances of insectivores and frugivores were greater in polyculture smallholdings than in monoculture smallholdings. In the monoculture models, predictor variables explained 11.31–19.98% of the variation in bird species richness. When polyculture was being practiced, bird species richness increased significantly with the height of ground vegetation cover, distance to major roads, and distance to rice fields. In the polyculture models, predictor variables accounted for 11.71–24.85% of the variation in bird species richness. We also found that bird species richness increased significantly with height of ground vegetation, but it decreased with ground vegetation cover and distance to rivers. The evidence from this study suggests that monoculture and polyculture farming were able to maintain farmland biodiversity in smallholdings, at least for birds, but differed in richness, population, and feeding guild.  相似文献   

16.
Aim To document the geographical structure of the historical signal in the continental species richness gradient of birds and evaluate the influences of contemporary and historical climatic conditions on the generation and maintenance of the richness pattern. Location Australia. Methods We used range maps of breeding birds to generate the spatial pattern of species richness at four grain sizes, and two molecular phylogenies to measure the level of evolutionary development of avifaunas at each grain size. We then used simple correlation and path analysis to generate a statistical model of species richness using environmental predictor variables and compared the spatial patterns of richness and mean evolutionary development to identify possible environmental links between richness and net diversification rates across the continent. Results The contemporary richness pattern is well explained statistically by actual evapotranspiration (a measure of water–energy balance), operating both directly and indirectly through plant production, and this is robust to the spatial resolution of the analysis. Further, species richness and the mean level of evolutionary development of faunas show a strong spatial correspondence, such that dry areas support both fewer species and species from more highly derived families, whereas wet areas support more species of both basal and derived families. The evolutionary pattern conforms to a similar pattern known for plants and is probably explained by the increase in aridity in western and central Australia arising in the Miocene. Main conclusion The contemporary bird richness gradient contains a historical signal and reflects the effects of both current levels of water availability as well as changes in rainfall patterns extending over evolutionary time. The historical signal persists even in the absence of obvious hard barriers to dispersal.  相似文献   

17.
The conversion of forest into farmland has resulted in mosaic landscapes in many parts of the tropics. From a conservation perspective, it is important to know whether tropical farmlands can buffer species loss caused by deforestation and how different functional groups of birds respond to land-use intensification. To test the degree of differentiation between farmland and forest bird communities across feeding guilds, we analyzed stable C and N isotopes in blood and claws of 101 bird species comprising four feeding guilds along a tropical forest-farmland gradient in Kenya. We additionally assessed the importance of farmland insectivores for pest control in C4 crops by using allometric relationships, C stable isotope ratios and estimates of bird species abundance. Species composition differed strongly between forest and farmland bird communities. Across seasons, forest birds primarily relied on C3 carbon sources, whereas many farmland birds also assimilated C4 carbon. While C sources of frugivores and omnivores did not differ between forest and farmland communities, insectivores used more C4 carbon in the farmland than in the forest. Granivores assimilated more C4 carbon than all other guilds in the farmland. We estimated that insectivorous farmland birds consumed at least 1,000 kg pest invertebrates km?2 year?1. We conclude that tropical forest and farmland understory bird communities are strongly separated and that tropical farmlands cannot compensate forest loss for insectivorous forest understory birds. In tropical farmlands, insectivorous bird species provide a quantitatively important contribution to pest control.  相似文献   

18.
Biodiversity positively relates with the provisioning of ecosystem services and preserving areas with elevated diversity of highly-functional species could help to ensure human well-being. Most studies addressed to make these decisions use maps relying on species occurrences, where sites containing several species are proposed as priority conservation areas. These maps, however, may underestimate species richness because of the incompleteness of occurrence data. To improve this methodology, we propose using habitat suitability models to estimate the potential distribution of species from occurrence data, and later shaping richness maps by overlapping these predicted distribution ranges. We tested this proposal with Mexican oaks because they provide several ecosystem services and habitat suitability models of species were calibrated with MaxEnt. We used linear regressions to compare the outputs of these predictive maps with those of maps based on species occurrences only and, for both mapping methods, we assessed how much surface of sites with elevated richness and endemism of oaks is currently included within nature reserves. Both mapping methods indicated that oak species are concentrated in mountain regions of Mexico, but predictive maps based on habitat suitability models indicated higher oak richness and endemism that maps based on species occurrences only. Our results also indicated that nature reserves cover a small fraction of areas harboring elevated richness and endemism of oaks. These results suggest that estimating richness across extensive geographic regions using habitat suitability models quickly provides accurate information to make conservation decisions for highly-functional species groups.  相似文献   

19.
Species distribution models (SDMs) are numerical tools that combine species occurrence/density or species richness with environmental data in order to predict particular species’ distribution. In most cases only abiotic environmental parameters are used as predictors, while biotic interactions which control distribution of species and influence the goodness of fit of the SDM, such as predator–prey systems, have been broadly neglected. For this reason, we tested the usefulness of easy to detect predators, such as the Common Buzzard and the Common Raven, as positive and negative predictors, respectively, of farmland bird species richness. We analyzed factors affecting the density of both predators and farmland bird species using data from 958 1 × 1 km2 study plots in Poland and a set of 22 environmental variables. Next, we also included these predators’ densities as additional predictors of farmland bird species. Habitat and climatological predictors were aggregated using the Principal Components Analysis and then related to the Common Raven's and the Common Buzzard's densities as well as farmland bird species richness using General Additive Models. Finally, completed models were assessed according to information – theoretic criteria. Our results showed that all the analyzed groups occurred in open areas; the Common Buzzard and passerine bird species preferred traditional farmland, while the Common Raven reached its highest density in modern intensive farmland. Importantly, we documented a significant increase in the goodness of fit of SDMs for farmland bird species, having added the density of predators as negative (Common Raven) and positive (Common Buzzard) predictors. Consequently, our findings suggest that species’ specific models can improve the predictive power of SDMs and can be used as an effective tool for predicting bird diversity with higher accuracy.  相似文献   

20.
Aim The aim of this study was to test a variant of the evolutionary time hypothesis for the bird latitudinal diversity gradient derived from the effects of niche conservatism in the face of global climate change over evolutionary time. Location The Western Hemisphere. Methods We used digitized range maps of breeding birds to estimate the species richness at two grain sizes, 756 and 12,100 km2. We then used molecular phylogenies resolved to family to quantify the root distance (RD) of each species as a measure of its level of evolutionary development. Birds were classified as ‘basal’ or ‘derived’ based on the RD of their family, and richness patterns were contrasted for the most basal and most derived 30% of species. We also generated temperature estimates for the Palaeogene across the Western Hemisphere to examine how spatial covariation between past and present climates might make it difficult to distinguish between ecological and evolutionary hypotheses for the current richness gradient. Results The warm, wet tropics support many species from basal bird clades, whereas the northern temperate zone and cool or dry tropics are dominated by species from more recent, evolutionarily derived clades. Furthermore, crucial to evaluating how niche conservatism among birds may drive the hemispherical richness gradient, the spatial structure of the richness gradient for basal groups is statistically indistinguishable from the overall gradient, whereas the richness gradient for derived groups is much shallower than the overall gradient. Finally, modern temperatures and the pattern of climate cooling since the Eocene are indistinguishable as predictors of bird species richness. Main conclusions Differences in the richness gradients of basal vs. derived clades suggest that the hemispherical gradient has been strongly influenced by the differential extirpation of species in older, warm‐adapted clades from parts of the world that have become cooler in the present. We propose that niche conservatism and global‐scale climate change over evolutionary time provide a parsimonious explanation for the contemporary bird latitudinal diversity gradient in the New World, although dispersal limitation of some highly derived clades probably plays a secondary role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号