首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 6-phospho-β-glucosidase BglA-2 (EC 3.2.1.86) from glycoside hydrolase family 1 (GH-1) catalyzes the hydrolysis of β-1,4-linked cellobiose 6-phosphate (cellobiose-6′P) to yield glucose and glucose 6-phosphate. Both reaction products are further metabolized by the energy-generating glycolytic pathway. Here, we present the first crystal structures of the apo and complex forms of BglA-2 with thiocellobiose-6′P (a non-metabolizable analog of cellobiose-6′P) at 2.0 and 2.4 Å resolution, respectively. Similar to other GH-1 enzymes, the overall structure of BglA-2 from Streptococcus pneumoniae adopts a typical (β/α)8 TIM-barrel, with the active site located at the center of the convex surface of the β-barrel. Structural analyses, in combination with enzymatic data obtained from site-directed mutant proteins, suggest that three aromatic residues, Tyr126, Tyr303, and Trp338, at subsite +1 of BglA-2 determine substrate specificity with respect to 1,4-linked 6-phospho-β-glucosides. Moreover, three additional residues, Ser424, Lys430, and Tyr432 of BglA-2, were found to play important roles in the hydrolytic selectivity toward phosphorylated rather than non-phosphorylated compounds. Comparative structural analysis suggests that a tryptophan versus a methionine/alanine residue at subsite −1 may contribute to the catalytic and substrate selectivity with respect to structurally similar 6-phospho-β-galactosidases and 6-phospho-β-glucosidases assigned to the GH-1 family.  相似文献   

2.
Osteopontin (OPN) is a highly modified integrin-binding protein present in most tissues and body fluids where it has been implicated in numerous biological processes. A significant regulation of OPN function is mediated through phosphorylation and proteolytic processing. Proteolytic cleavage by thrombin and matrix metalloproteinases close to the integrin-binding Arg-Gly-Asp sequence modulates the function of OPN and its integrin binding properties. In this study, seven N-terminal OPN fragments originating from proteolytic cleavage have been characterized from human milk. Identification of the cleavage sites revealed that all fragments contained the Arg–Gly–Asp145 sequence and were generated by cleavage of the Leu151–Arg152, Arg152–Ser153, Ser153–Lys154, Lys154–Ser155, Ser155–Lys156, Lys156–Lys157, or Phe158–Arg159 peptide bonds. Six cleavages cannot be ascribed to thrombin or matrix metalloproteinase activity, whereas the cleavage at Arg152–Ser153 matches thrombin specificity for OPN. The principal protease in milk, plasmin, hydrolyzed the same peptide bond as thrombin, but its main cleavage site was identified to be Lys154–Ser155. Another endogenous milk protease, cathepsin D, cleaved the Leu151–Arg152 bond. OPN fragments corresponding to plasmin activity were also identified in urine showing that plasmin cleavage of OPN is not restricted to milk. Plasmin, but not cathepsin D, cleavage of OPN increased cell adhesion mediated by the αVβ3- or α5β1-integrins. Similar cellular adhesion was mediated by plasmin and thrombin-cleaved OPN showing that plasmin can be a potent regulator of OPN activity. These data show that OPN is highly susceptible to cleavage near its integrin-binding motifs, and the protein is a novel substrate for plasmin and cathepsin D.  相似文献   

3.
Multiple interactions exist between human follicle-stimulating hormone (FSH) and the N-terminal hormone-binding fragment of the human FSH receptor (FSHR) extracellular domain (ECD). Binding of the other human glycoprotein hormones to their cognate human receptors (luteinizing hormone receptor (LHR) and thyroid-stimulating hormone receptor (TSHR)) was expected to be similar. This study focuses on amino acid residues in β-strands 2 (Lys74), 4 (Tyr124, Asn129, and Thr130), and 5 (Asp150 and Asp153) of the FSHR ECD identified in the human FSH·FSHR ECD crystal structure as contact sites with the common glycoprotein hormone α-subunit, and on noncontact residues in β-strands 2 (Ser78) and 8 (Asp224 and Ser226) as controls. These nine residues are either invariant or highly conserved in LHR and TSHR. Mutagenesis and functional characterization of these residues in all three human receptors allowed an assessment of their contribution to binding and receptor activation. Surprisingly, the six reported α-subunit contact residues of the FSHR ECD could be replaced without significant loss of FSH binding, while cAMP signaling potency was diminished significantly with several replacements. Comparative studies of the homologous residues in LHR and TSHR revealed both similarities and differences. The results for FSH/FSHR were analyzed on the basis of the crystal structure of the FSH·FSHR ECD complex, and comparative modeling was used to generate structures for domains, proteins, and complexes for which no structures were available. Although structural information of hormone-receptor interaction allowed the identification of hormone-receptor contact sites, functional analysis of each contact site was necessary to assess its contribution to hormone binding and receptor activation.  相似文献   

4.
3-Ketosteroid Δ1-dehydrogenases are FAD-dependent enzymes that catalyze the 1,2-desaturation of 3-ketosteroid substrates to initiate degradation of the steroid nucleus. Here we report the 2.0 Å resolution crystal structure of the 56-kDa enzyme from Rhodococcus erythropolis SQ1 (Δ1-KSTD1). The enzyme contains two domains: an FAD-binding domain and a catalytic domain, between which the active site is situated as evidenced by the 2.3 Å resolution structure of Δ1-KSTD1 in complex with the reaction product 1,4-androstadiene-3,17-dione. The active site contains four key residues: Tyr119, Tyr318, Tyr487, and Gly491. Modeling of the substrate 4-androstene-3,17-dione at the position of the product revealed its interactions with these residues and the FAD. The C1 and C2 atoms of the substrate are at reaction distance to the N5 atom of the isoalloxazine ring of FAD and the hydroxyl group of Tyr318, respectively, whereas the C3 carbonyl group is at hydrogen bonding distance from the hydroxyl group of Tyr487 and the backbone amide of Gly491. Site-directed mutagenesis of the tyrosines to phenylalanines confirmed their importance for catalysis. The structural features and the kinetic properties of the mutants suggest a catalytic mechanism in which Tyr487 and Gly491 work in tandem to promote keto-enol tautomerization and increase the acidity of the C2 hydrogen atoms of the substrate. With assistance of Tyr119, the general base Tyr318 abstracts the axial β-hydrogen from C2 as a proton, whereas the FAD accepts the axial α-hydrogen from the C1 atom of the substrate as a hydride ion.  相似文献   

5.
The aggregation of the 42-residue amyloid β-protein (Aβ42) is involved in the pathogenesis of Alzheimer disease (AD). Numerous flavonoids exhibit inhibitory activity against Aβ42 aggregation, but their mechanism remains unclear in the molecular level. Here we propose the site-specific inhibitory mechanism of (+)-taxifolin, a catechol-type flavonoid, whose 3′,4′-dihydroxyl groups of the B-ring plays a critical role. Addition of sodium periodate, an oxidant, strengthened suppression of Aβ42 aggregation by (+)-taxifolin, whereas no inhibition was observed under anaerobic conditions, suggesting the inhibition to be associated with the oxidation to form o-quinone. Because formation of the Aβ42-taxifolin adduct was suggested by mass spectrometry, Aβ42 mutants substituted at Arg5, Lys16, and/or Lys28 with norleucine (Nle) were prepared to identify the residues involved in the conjugate formation. (+)-Taxifolin did not suppress the aggregation of Aβ42 mutants at Lys16 and/or Lys28 except for the mutant at Arg5. In addition, the aggregation of Aβ42 was inhibited by other catechol-type flavonoids, whereas that of K16Nle-Aβ42 was not. In contrast, some non-catechol-type flavonoids suppressed the aggregation of K16Nle-Aβ42 as well as Aβ42. Furthermore, interaction of (+)-taxifolin with the β-sheet region in Aβ42 was not observed using solid-state NMR unlike curcumin of the non-catechol-type. These results demonstrate that catechol-type flavonoids could specifically suppress Aβ42 aggregation by targeting Lys residues. Although the anti-AD activity of flavonoids has been ascribed to their antioxidative activity, the mechanism that the o-quinone reacts with Lys residues of Aβ42 might be more intrinsic. The Lys residues could be targets for Alzheimer disease therapy.  相似文献   

6.
Cdc34 is an E2 ubiquitin-conjugating enzyme that functions in conjunction with SCF (Skp1·Cullin 1·F-box) E3 ubiquitin ligase to catalyze covalent attachment of polyubiquitin chains to a target protein. Here we identified direct interactions between the human Cdc34 C terminus and ubiquitin using NMR chemical shift perturbation assays. The ubiquitin binding activity was mapped to two separate Cdc34 C-terminal motifs (UBS1 and UBS2) that comprise residues 206–215 and 216–225, respectively. UBS1 and UBS2 bind to ubiquitin in the proximity of ubiquitin Lys48 and C-terminal tail, both of which are key sites for conjugation. When bound to ubiquitin in one orientation, the Cdc34 UBS1 aromatic residues (Phe206, Tyr207, Tyr210, and Tyr211) are probably positioned in the vicinity of ubiquitin C-terminal residue Val70. Replacement of UBS1 aromatic residues by glycine or of ubiquitin Val70 by alanine decreased UBS1-ubiquitin affinity interactions. UBS1 appeared to support the function of Cdc34 in vivo because human Cdc34(1–215) but not Cdc34(1–200) was able to complement the growth defect by yeast Cdc34 mutant strain. Finally, reconstituted IκBα ubiquitination analysis revealed a role for each adjacent pair of UBS1 aromatic residues (Phe206/Tyr207, Tyr210/Tyr211) in conjugation, with Tyr210 exhibiting the most pronounced catalytic function. Intriguingly, Cdc34 Tyr210 was required for the transfer of the donor ubiquitin to a receptor lysine on either IκBα or a ubiquitin in a manner that depended on the neddylated RING sub-complex of the SCF. Taken together, our results identified a new ubiquitin binding activity within the human Cdc34 C terminus that contributes to SCF-dependent ubiquitination.  相似文献   

7.
Activation of the α3β4 nicotinic acetylcholine receptor (nAChR) subtype has recently been implicated in the pathophysiology of various conditions, including development and progression of lung cancer and in nicotine addiction. As selective α3β4 nAChR antagonists, α-conotoxins are valuable tools to evaluate the functional roles of this receptor subtype. We previously reported the discovery of a new α4/7-conotoxin, RegIIA. RegIIA was isolated from Conus regius and inhibits acetylcholine (ACh)-evoked currents mediated by α3β4, α3β2, and α7 nAChR subtypes. The current study used alanine scanning mutagenesis to understand the selectivity profile of RegIIA at the α3β4 nAChR subtype. [N11A] and [N12A] RegIIA analogs exhibited 3-fold more selectivity for the α3β4 than the α3β2 nAChR subtype. We also report synthesis of [N11A,N12A]RegIIA, a selective α3β4 nAChR antagonist (IC50 of 370 nm) that could potentially be used in the treatment of lung cancer and nicotine addiction. Molecular dynamics simulations of RegIIA and [N11A,N12A]RegIIA bound to α3β4 and α3β2 suggest that destabilization of toxin contacts with residues at the principal and complementary faces of α3β2 (α3-Tyr92, Ser149, Tyr189, Cys192, and Tyr196; β2-Trp57, Arg81, and Phe119) may form the molecular basis for the selectivity shift.  相似文献   

8.
The phospho-binding protein 14-3-3ζ acts as a signaling hub controlling a network of interacting partners and oncogenic pathways. We show here that lysines within the 14-3-3ζ binding pocket and protein-protein interface can be modified by acetylation. The positive charge on two of these lysines, Lys49 and Lys120, is critical for coordinating 14-3-3ζ-phosphoprotein interactions. Through screening, we identified HDAC6 as the Lys49/Lys120 deacetylase. Inhibition of HDAC6 blocks 14-3-3ζ interactions with two well described interacting partners, Bad and AS160, which triggers their dephosphorylation at Ser112 and Thr642, respectively. Expression of an acetylation-refractory K49R/K120R mutant of 14-3-3ζ rescues both the HDAC6 inhibitor-induced loss of interaction and Ser112/Thr642 phosphorylation. Furthermore, expression of the K49R/K120R mutant of 14-3-3ζ inhibits the cytotoxicity of HDAC6 inhibition. These data demonstrate a novel role for HDAC6 in controlling 14-3-3ζ binding activity.  相似文献   

9.
Utilizing the Citrobacter rodentium-induced transmissible murine colonic hyperplasia (TMCH) model, we measured hyperplasia and NF-κB activation during progression (days 6 and 12 post-infection) and regression (days 20–34 post-infection) phases of TMCH. NF-κB activity increased at progression in conjunction with bacterial attachment and translocation to the colonic crypts and decreased 40% by day 20. NF-κB activity at days 27 and 34, however, remained 2–3-fold higher than uninfected control. Expression of the downstream target gene CXCL-1/KC in the crypts correlated with NF-κB activation kinetics. Phosphorylation of cellular IκBα kinase (IKK)α/β (Ser176/180) was elevated during progression and regression of TMCH. Phosphorylation (Ser32/36) and degradation of IκBα, however, contributed to NF-κB activation only from days 6 to 20 but not at later time points. Phosphorylation of MEK1/2 (Ser217/221), ERK1/2 (Thr202/Tyr204), and p38 (Thr180/Tyr182) paralleled IKKα/β kinetics at days 6 and 12 without declining with regressing hyperplasia. siRNAs to MEK, ERK, and p38 significantly blocked NF-κB activity in vitro, whereas MEK1/2-inhibitor (PD98059) also blocked increases in MEK1/2, ERK1/2, and IKKα/β thereby inhibiting NF-κB activity in vivo. Cellular and nuclear levels of Ser536-phosphorylated (p65536) and Lys310-acetylated p65 subunit accompanied functional NF-κB activation during TMCH. RSK-1 phosphorylation at Thr359/Ser363 in cellular/nuclear extracts and co-immunoprecipitation with cellular p65-NF-κB overlapped with p65536 kinetics. Dietary pectin (6%) blocked NF-κB activity by blocking increases in p65 abundance and nuclear translocation thereby down-regulating CXCL-1/KC expression in the crypts. Thus, NF-κB activation persisted despite the lack of bacterial attachment to colonic mucosa beyond peak hyperplasia. The MEK/ERK/p38 pathway therefore seems to modulate sustained activation of NF-κB in colonic crypts in response to C. rodentium infection.  相似文献   

10.
The binding of the Epstein-Barr virus glycoprotein gp350 by complement receptor type 2 (CR2) is critical for viral attachment to B lymphocytes. We set out to test hypotheses regarding the molecular nature of this interaction by developing an enzyme-linked immunosorbent assay (ELISA) for the efficient analysis of the gp350-CR2 interaction by utilizing wild-type and mutant forms of recombinant gp350 and also of the CR2 N-terminal domains SCR1 and SCR2 (designated CR2 SCR1-2). To delineate the CR2-binding site on gp350, we generated 17 gp350 single-site substitutions targeting an area of gp350 that has been broadly implicated in the binding of both CR2 and the major inhibitory anti-gp350 monoclonal antibody (MAb) 72A1. These site-directed mutations identified a novel negatively charged CR2-binding surface described by residues Glu-21, Asp-22, Glu-155, Asp-208, Glu-210, and Asp-296. We also identified gp350 amino acid residues involved in non-charge-dependent interactions with CR2, including Tyr-151, Ile-160, and Trp-162. These data were supported by experiments in which phycoerythrin-conjugated wild-type and mutant forms of gp350 were incubated with CR2-expressing K562 cells and binding was assessed by flow cytometry. The ELISA was further utilized to identify several positively charged residues (Arg-13, Arg-28, Arg-36, Lys-41, Lys-57, Lys-67, Arg-83, and Arg-89) within SCR1-2 of CR2 that are involved in the binding interaction with gp350. These experiments allowed a comparison of those CR2 residues that are important for binding gp350 to those that define the epitope for an effective inhibitory anti-CR2 MAb, 171 (Asn-11, Arg-13, Ser-32, Thr-34, Arg-36, and Tyr-64). The mutagenesis data were used to calculate a model of the CR2-gp350 complex using the soft-docking program HADDOCK.  相似文献   

11.
Accumulation, activation, and control of neutrophils at inflammation sites is partly driven by N-formyl peptide chemoattractant receptors (FPRs). Occupancy of these G-protein-coupled receptors by formyl peptides has been shown to induce regulatory phosphorylation of cytoplasmic serine/threonine amino acid residues in heterologously expressed recombinant receptors, but the biochemistry of these modifications in primary human neutrophils remains relatively unstudied. FPR1 and FPR2 were partially immunopurified using antibodies that recognize both receptors (NFPRa) or unphosphorylated FPR1 (NFPRb) in dodecylmaltoside extracts of unstimulated and N-formyl-Met-Leu-Phe (fMLF) + cytochalasin B-stimulated neutrophils or their membrane fractions. After deglycosylation and separation by SDS-PAGE, excised Coomassie Blue-staining bands (∼34,000 Mr) were tryptically digested, and FPR1, phospho-FPR1, and FPR2 content was confirmed by peptide mass spectrometry. C-terminal FPR1 peptides (Leu312–Arg322 and Arg323–Lys350) and extracellular FPR1 peptide (Ile191–Arg201) as well as three similarly placed FPR2 peptides were identified in unstimulated and fMLF + cytochalasin B-stimulated samples. LC/MS/MS identified seven isoforms of Ala323–Lys350 only in the fMLF + cytochalasin B-stimulated sample. These were individually phosphorylated at Thr325, Ser328, Thr329, Thr331, Ser332, Thr334, and Thr339. No phospho-FPR2 peptides were detected. Cytochalasin B treatment of neutrophils decreased the sensitivity of fMLF-dependent NFPRb recognition 2-fold, from EC50 = 33 ± 8 to 74 ± 21 nm. Our results suggest that 1) partial immunopurification, deglycosylation, and SDS-PAGE separation of FPRs is sufficient to identify C-terminal FPR1 Ser/Thr phosphorylations by LC/MS/MS; 2) kinases/phosphatases activated in fMLF/cytochalasin B-stimulated neutrophils produce multiple C-terminal tail FPR1 Ser/Thr phosphorylations but have little effect on corresponding FPR2 sites; and 3) the extent of FPR1 phosphorylation can be monitored with C-terminal tail FPR1-phosphospecific antibodies.  相似文献   

12.
The human genome encodes six proteins of family 18 glycosyl hydrolases, two active chitinases and four chitinase-like lectins (chi-lectins) lacking catalytic activity. The present article is dedicated to homology modeling of 3D structure of human chitinase 3-like 2 protein (CHI3L2), which is overexpressed in glial brain tumors, and its structural comparison with homologous chi-lectin CHI3L1. Two crystal structures of CHI3L1 in free state (Protein Data Bank codes 1HJX and 1NWR) were used as structural templates for the homology modeling by Modeller 9.7 program, and the best quality model structure was selected from the obtained model ensemble. Analysis of potential oligosaccharide-binding groove structures of CHI3L1 and CHI3L2 revealed significant differences between these two homologous proteins. 8 of 19 amino acid residues important for ligand binding are substituted in CHI3L2: Tyr34/Asp39, Trp69/Lys74, Trp71/Lys76, Trp99/Tyr104, Asn100/Leu105, Met204/Leu210, Tyr206/Phe212 and Arg263/His271. The differences between these residues could influence the structure of the ligand-binding groove and substantially change the ability of CHI3L2 to bind oligosaccharide ligands.  相似文献   

13.
Complement receptor type 2 (CR2/CD21) is essential for the attachment of Epstein-Barr virus (EBV) to the surface of B-lymphocytes in an interaction mediated by the viral envelope glycoprotein gp350. The heavily glycosylated structure of EBV gp350 has recently been elucidated by x-ray crystallography, and the CR2 binding site on this protein has been characterized. To identify the corresponding gp350 binding site on CR2, we have undertaken a site-directed mutagenesis study targeting regions of CR2 that have previously been implicated in the binding of CR2 to the C3d/C3dg fragments of complement component C3. Wild-type or mutant forms of CR2 were expressed on K562 cells, and the ability of these CR2-expressing cells to bind gp350 was measured using flow cytometry. Mutations directed toward the two N-terminal extracellular domains of CR2 (SCR1-2) reveal that a large contiguous surface of CR2 SCR1-2 is involved in gp350 binding, including a number of positively charged residues (Arg-13, (Arg-28, (Arg-36, Lys-41, Lys-57, Lys-67, and Arg-83). These data appear to complement the CR2 binding site on gp350, which is characterized by a preponderance of negative charge. In addition to identifying the importance of charge in the formation of a CR2-gp350 complex, we also provide evidence that both SCR1 and SCR2 make contact with gp350. Specifically, two anti-CR2 monoclonal antibodies, designated as monoclonal antibodies 171 and 1048 whose primary epitopes are located within SCR2, inhibit binding of wild-type CR2 to EBV gp350; with regard to SCR1, both K562 cells expressing an S15P mutation and recombinant S15P CR2 proteins exhibit diminished gp350 binding.  相似文献   

14.
N-Ethylmaleimide-sensitive factor (NSF) is a homo-hexameric member of the AAA+ (ATPases associated with various cellular activities plus) family. It plays an essential role in most intracellular membrane trafficking through its binding to and disassembly of soluble NSF attachment protein (SNAP) receptor (SNARE) complexes. Each NSF protomer contains an N-terminal domain (NSF-N) and two AAA domains, a catalytic NSF-D1 and a structural NSF-D2. This study presents detailed mutagenesis analyses of NSF-N and NSF-D1, dissecting their roles in ATP hydrolysis, SNAP·SNARE binding, and complex disassembly. Our results show that a positively charged surface on NSF-N, bounded by Arg67 and Lys105, and the conserved residues in the central pore of NSF-D1 (Tyr296 and Gly298) are involved in SNAP·SNARE binding but not basal ATP hydrolysis. Mutagenesis of Sensor 1 (Thr373–Arg375), Sensor 2 (Glu440–Glu442), and Arginine Fingers (Arg385 and Arg388) in NSF-D1 shows that each region plays a discrete role. Sensor 1 is important for basal ATPase activity and nucleotide binding. Sensor 2 plays a role in ATP- and SNAP-dependent SNARE complex binding and disassembly but does so in cis and not through inter-protomer interactions. Arginine Fingers are important for SNAP·SNARE complex-stimulated ATPase activity and complex disassembly. Mutants at these residues have a dominant-negative phenotype in cells, suggesting that Arginine Fingers function in trans via inter-protomer interactions. Taken together, these data establish functional roles for many of the structural elements of the N domain and of the D1 ATP-binding site of NSF.  相似文献   

15.
G protein-coupled receptor kinases (GRKs) phosphorylate agonist-occupied receptors initiating the processes of desensitization and β-arrestin-dependent signaling. Interaction of GRKs with activated receptors serves to stimulate their kinase activity. The extreme N-terminal helix (αN), the kinase small lobe, and the active site tether (AST) of the AGC kinase domain have previously been implicated in mediating the allosteric activation. Expanded mutagenesis of the αN and AST allowed us to further assess the role of these two regions in kinase activation and receptor phosphorylation in vitro and in intact cells. We also developed a bioluminescence resonance energy transfer-based assay to monitor the recruitment of GRK2 to activated α2A-adrenergic receptors (α2AARs) in living cells. The bioluminescence resonance energy transfer signal exhibited a biphasic response to norepinephrine concentration, suggesting that GRK2 is recruited to Gβγ and α2AAR with EC50 values of 15 nm and 8 μm, respectively. We show that mutations in αN (L4A, V7E, L8E, V11A, S12A, Y13A, and M17A) and AST (G475I, V477D, and I485A) regions impair or potentiate receptor phosphorylation and/or recruitment. We suggest that a surface of GRK2, including Leu4, Val7, Leu8, Val11, and Ser12, directly interacts with receptors, whereas residues such as Asp10, Tyr13, Ala16, Met17, Gly475, Val477, and Ile485 are more important for kinase domain closure and activation. Taken together with data on GRK1 and GRK6, our data suggest that all three GRK subfamilies make conserved interactions with G protein-coupled receptors, but there may be unique interactions that influence selectivity.  相似文献   

16.
Pathogenic bacteria are endowed with an arsenal of specialized enzymes to convert nutrient compounds from their cell hosts. The essential N-acetylmannosamine-6-phosphate 2-epimerase (NanE) belongs to a convergent glycolytic pathway for utilization of the three amino sugars, GlcNAc, ManNAc, and sialic acid. The crystal structure of ligand-free NanE from Clostridium perfringens reveals a modified triose-phosphate isomerase (β/α)8 barrel in which a stable dimer is formed by exchanging the C-terminal helix. By retaining catalytic activity in the crystalline state, the structure of the enzyme bound to the GlcNAc-6P product identifies the topology of the active site pocket and points to invariant residues Lys66 as a putative single catalyst, supported by the structure of the catalytically inactive K66A mutant in complex with substrate ManNAc-6P. 1H NMR-based time course assays of native NanE and mutated variants demonstrate the essential role of Lys66 for the epimerization reaction with participation of neighboring Arg43, Asp126, and Glu180 residues. These findings unveil a one-base catalytic mechanism of C2 deprotonation/reprotonation via an enolate intermediate and provide the structural basis for the development of new antimicrobial agents against this family of bacterial 2-epimerases.  相似文献   

17.
GABA is the major inhibitory neurotransmitter in the nervous system and acts at a variety of receptors including GABAC receptors, which are a subclass of GABAA receptors. Here we have used molecular dynamics simulations of GABA docked into the extracellular domain of the GABAC receptor to explain the molecular interactions of the neurotransmitter with the residues that contribute to the binding site; in particular, we have explored the interaction of GABA with Arg104. The simulations suggest that the amine group of GABA forms cation-π interactions with Tyr102 and Tyr198, and hydrogen-bonds with Gln83, Glu220, Ser243, and Ser168, and, most prominently, with Arg104. Substituting Arg104 with Ala, Glu, or Lys, which experimentally disrupt GABAC receptor function, and repeating the simulation revealed fewer and different bonding patterns with GABA, or the rapid exit of GABA from the binding pocket. The simulations therefore unveil interactions of GABA within the binding pocket, and explain experimental data, which indicate that Arg104 is critical for the efficient functioning of the receptor.  相似文献   

18.
Active-site-inhibited plasmin was prepared by inhibition with d-valyl-l-phenylalanyl-l-lysylchloromethane or by bovine pancreatic trypsin inhibitor (Kunitz inhibitor). Active-site-inhibited Glu-plasmin binds far more strongly to fibrin than Glu-plasminogen [native human plasminogen with N-terminal glutamic acid (residues 1–790)]. This binding is decreased by α2-plasmin inhibitor and tranexamic acid, and is, in the latter case, related to saturation of a strong lysine-binding site. In contrast, α2-plasmin inhibitor and tranexamic acid have only weak effects on the binding of Glu-plasminogen to fibrin. This demonstrates that its strong lysine-binding site is of minor importance to its binding to fibrin. Active-site-inhibited Lys-plasmin and Lys-plasminogen (Glu-plasminogen lacking the N-terminal residues Glu1–Lys76, Glu1–Arg67 or Glu1–Lys77)display binding to fibrin similar to that of active-site inhibited Glu-plasmin. In addition, α2-plasmin inhibitor or tranexamic acid similarly decrease their binding to fibrin. Glu-plasminogen and active-site-inhibited Glu-plasmin have the same gross conformation, and conversion into their respective Lys- forms produces a similar marked change in conformation [Violand, Sodetz & Castellino (1975) Arch. Biochem. Biophys. 170, 300–305]. Our results indicate that this change is not essential to the degree of binding to fibrin or to the effect of α2-plasmin inhibitor and tranexamic acid on this binding. The conversion of miniplasminogen (Glu-plasminogen lacking the N-terminal residues Glu1–Val441) into active-site-inhibited miniplasmin makes no difference to the degree of binding to fibrin, which is similarly decreased by the addition of tranexamic acid and unaffected by α2-plasmin inhibitor. Active-site-inhibited Glu-plasmin, Lys-plasmin and miniplasmin have lower fibrin-binding values in a plasma system than in a purified system. Results with miniplasmin(ogen) indicate that plasma proteins other than α2-plasmin inhibitor and histidine-rich glycoprotein decrease the binding of plasmin(ogen) to fibrin.  相似文献   

19.
20.
The stimulation of fluid and electrolyte secretion in salivary cells results in ionic changes that promote rapid increases in the activity of the Na,K-ATPase. In many cell systems, there are conflicting findings concerning the regulation of the phosphorylation of the Na,K-ATPase α subunit, which is the catalytic moiety. Initially, we investigated the phosphorylation sites on the α1 subunit in native rat parotid acinar cells using tandem mass spectrometry and identified two new phosphorylation sites (Ser222, Ser407), three sites (Ser217, Tyr260, Ser47) previously found from large scale proteomic screens, and two sites (Ser23, Ser16) known to be phosphorylated by PKC. Subsequently, we used phospho-specific antibodies to examine the regulation of phosphorylation on Ser23 and Ser16 and measured changes in ERK phosphorylation in parallel. The G-protein-coupled muscarinic receptor mimetic carbachol, the phorbol ester phorbol 12-myristate 13-acetate, the Ca2+ ionophore ionomycin, and the serine/threonine phosphatase inhibitor calyculin A increased Ser23 α1 phosphorylation. Inhibition of classical PKC proteins blocked carbachol-stimulated Ser23 α1 subunit phosphorylation but not ERK phosphorylation, which was blocked by an inhibitor of novel PKC proteins. The carbachol-initiated phosphorylation of Ser23 α1 subunit was not modified by ERK or PKA activity. The Na,K-ATPase inhibitor ouabain reduced and enhanced the carbachol-promoted phosphorylation of Ser23 and Ser16, respectively, the latter because ouabain itself increased Ser16 phosphorylation; thus, both sites display conformational-dependent phosphorylation changes. Ouabain-initiated phosphorylation of Ser16 α1 was not blocked by PKC inhibitors, unlike carbachol- or phorbol 12-myristate 13-acetate-initiated phosphorylations, suggesting that this site was also a substrate for a kinase other than PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号