首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Necrotrophic and biotrophic pathogens are resisted by different plant defenses. While necrotrophic pathogens are sensitive to jasmonic acid (JA)-dependent resistance, biotrophic pathogens are resisted by salicylic acid (SA)- and reactive oxygen species (ROS)-dependent resistance. Although many pathogens switch from biotrophy to necrotrophy during infection, little is known about the signals triggering this transition. This study is based on the observation that the early colonization pattern and symptom development by the ascomycete pathogen Plectosphaerella cucumerina (P. cucumerina) vary between inoculation methods. Using the Arabidopsis (Arabidopsis thaliana) defense response as a proxy for infection strategy, we examined whether P. cucumerina alternates between hemibiotrophic and necrotrophic lifestyles, depending on initial spore density and distribution on the leaf surface. Untargeted metabolome analysis revealed profound differences in metabolic defense signatures upon different inoculation methods. Quantification of JA and SA, marker gene expression, and cell death confirmed that infection from high spore densities activates JA-dependent defenses with excessive cell death, while infection from low spore densities induces SA-dependent defenses with lower levels of cell death. Phenotyping of Arabidopsis mutants in JA, SA, and ROS signaling confirmed that P. cucumerina is differentially resisted by JA- and SA/ROS-dependent defenses, depending on initial spore density and distribution on the leaf. Furthermore, in situ staining for early callose deposition at the infection sites revealed that necrotrophy by P. cucumerina is associated with elevated host defense. We conclude that P. cucumerina adapts to early-acting plant defenses by switching from a hemibiotrophic to a necrotrophic infection program, thereby gaining an advantage of immunity-related cell death in the host.Plant pathogens are often classified as necrotrophic or biotrophic, depending on their infection strategy (Glazebrook, 2005; Nishimura and Dangl, 2010). Necrotrophic pathogens kill living host cells and use the decayed plant tissue as a substrate to colonize the plant, whereas biotrophic pathogens parasitize living plant cells by employing effector molecules that suppress the host immune system (Pel and Pieterse, 2013). Despite this binary classification, the majority of pathogenic microbes employ a hemibiotrophic infection strategy, which is characterized by an initial biotrophic phase followed by a necrotrophic infection strategy at later stages of infection (Perfect and Green, 2001). The pathogenic fungi Magnaporthe grisea, Sclerotinia sclerotiorum, and Mycosphaerella graminicola, the oomycete Phytophthora infestans, and the bacterial pathogen Pseudomonas syringae are examples of hemibiotrophic plant pathogens (Perfect and Green, 2001; Koeck et al., 2011; van Kan et al., 2014; Kabbage et al., 2015).Despite considerable progress in our understanding of plant resistance to necrotrophic and biotrophic pathogens (Glazebrook, 2005; Mengiste, 2012; Lai and Mengiste, 2013), recent debate highlights the dynamic and complex interplay between plant-pathogenic microbes and their hosts, which is raising concerns about the use of infection strategies as a static tool to classify plant pathogens. For instance, the fungal genus Botrytis is often labeled as an archetypal necrotroph, even though there is evidence that it can behave as an endophytic fungus with a biotrophic lifestyle (van Kan et al., 2014). The rice blast fungus Magnaporthe oryzae, which is often classified as a hemibiotrophic leaf pathogen (Perfect and Green, 2001; Koeck et al., 2011), can adopt a purely biotrophic lifestyle when infecting root tissues (Marcel et al., 2010). It remains unclear which signals are responsible for the switch from biotrophy to necrotrophy and whether these signals rely solely on the physiological state of the pathogen, or whether host-derived signals play a role as well (Kabbage et al., 2015).The plant hormones salicylic acid (SA) and jasmonic acid (JA) play a central role in the activation of plant defenses (Glazebrook, 2005; Pieterse et al., 2009, 2012). The first evidence that biotrophic and necrotrophic pathogens are resisted by different immune responses came from Thomma et al. (1998), who demonstrated that Arabidopsis (Arabidopsis thaliana) genotypes impaired in SA signaling show enhanced susceptibility to the biotrophic pathogen Hyaloperonospora arabidopsidis (formerly known as Peronospora parastitica), while JA-insensitive genotypes were more susceptible to the necrotrophic fungus Alternaria brassicicola. In subsequent years, the differential effectiveness of SA- and JA-dependent defense mechanisms has been confirmed in different plant-pathogen interactions, while additional plant hormones, such as ethylene, abscisic acid (ABA), auxins, and cytokinins, have emerged as regulators of SA- and JA-dependent defenses (Bari and Jones, 2009; Cao et al., 2011; Pieterse et al., 2012). Moreover, SA- and JA-dependent defense pathways have been shown to act antagonistically on each other, which allows plants to prioritize an appropriate defense response to attack by biotrophic pathogens, necrotrophic pathogens, or herbivores (Koornneef and Pieterse, 2008; Pieterse et al., 2009; Verhage et al., 2010).In addition to plant hormones, reactive oxygen species (ROS) play an important regulatory role in plant defenses (Torres et al., 2006; Lehmann et al., 2015). Within minutes after the perception of pathogen-associated molecular patterns, NADPH oxidases and apoplastic peroxidases generate early ROS bursts (Torres et al., 2002; Daudi et al., 2012; O’Brien et al., 2012), which activate downstream defense signaling cascades (Apel and Hirt, 2004; Torres et al., 2006; Miller et al., 2009; Mittler et al., 2011; Lehmann et al., 2015). ROS play an important regulatory role in the deposition of callose (Luna et al., 2011; Pastor et al., 2013) and can also stimulate SA-dependent defenses (Chaouch et al., 2010; Yun and Chen, 2011; Wang et al., 2014; Mammarella et al., 2015). However, the spread of SA-induced apoptosis during hyperstimulation of the plant immune system is contained by the ROS-generating NADPH oxidase RBOHD (Torres et al., 2005), presumably to allow for the sufficient generation of SA-dependent defense signals from living cells that are adjacent to apoptotic cells. Nitric oxide (NO) plays an additional role in the regulation of SA/ROS-dependent defense (Trapet et al., 2015). This gaseous molecule can stimulate ROS production and cell death in the absence of SA while preventing excessive ROS production at high cellular SA levels via S-nitrosylation of RBOHD (Yun et al., 2011). Recently, it was shown that pathogen-induced accumulation of NO and ROS promotes the production of azelaic acid, a lipid derivative that primes distal plants for SA-dependent defenses (Wang et al., 2014). Hence, NO, ROS, and SA are intertwined in a complex regulatory network to mount local and systemic resistance against biotrophic pathogens. Interestingly, pathogens with a necrotrophic lifestyle can benefit from ROS/SA-dependent defenses and associated cell death (Govrin and Levine, 2000). For instance, Kabbage et al. (2013) demonstrated that S. sclerotiorum utilizes oxalic acid to repress oxidative defense signaling during initial biotrophic colonization, but it stimulates apoptosis at later stages to advance necrotrophic colonization. Moreover, SA-induced repression of JA-dependent resistance not only benefits necrotrophic pathogens but also hemibiotrophic pathogens after having switched from biotrophy to necrotrophy (Glazebrook, 2005; Pieterse et al., 2009, 2012).Plectosphaerella cucumerina ((P. cucumerina, anamorph Plectosporum tabacinum) anamorph Plectosporum tabacinum) is a filamentous ascomycete fungus that can survive saprophytically in soil by decomposing plant material (Palm et al., 1995). The fungus can cause sudden death and blight disease in a variety of crops (Chen et al., 1999; Harrington et al., 2000). Because P. cucumerina can infect Arabidopsis leaves, the P. cucumerina-Arabidopsis interaction has emerged as a popular model system in which to study plant defense reactions to necrotrophic fungi (Berrocal-Lobo et al., 2002; Ton and Mauch-Mani, 2004; Carlucci et al., 2012; Ramos et al., 2013). Various studies have shown that Arabidopsis deploys a wide range of inducible defense strategies against P. cucumerina, including JA-, SA-, ABA-, and auxin-dependent defenses, glucosinolates (Tierens et al., 2001; Sánchez-Vallet et al., 2010; Gamir et al., 2014; Pastor et al., 2014), callose deposition (García-Andrade et al., 2011; Gamir et al., 2012, 2014; Sánchez-Vallet et al., 2012), and ROS (Tierens et al., 2002; Sánchez-Vallet et al., 2010; Barna et al., 2012; Gamir et al., 2012, 2014; Pastor et al., 2014). Recent metabolomics studies have revealed large-scale metabolic changes in P. cucumerina-infected Arabidopsis, presumably to mobilize chemical defenses (Sánchez-Vallet et al., 2010; Gamir et al., 2014; Pastor et al., 2014). Furthermore, various chemical agents have been reported to induce resistance against P. cucumerina. These chemicals include β-amino-butyric acid, which primes callose deposition and SA-dependent defenses, benzothiadiazole (BTH or Bion; Görlach et al., 1996; Ton and Mauch-Mani, 2004), which activates SA-related defenses (Lawton et al., 1996; Ton and Mauch-Mani, 2004; Gamir et al., 2014; Luna et al., 2014), JA (Ton and Mauch-Mani, 2004), and ABA, which primes ROS and callose deposition (Ton and Mauch-Mani, 2004; Pastor et al., 2013). However, among all these studies, there is increasing controversy about the exact signaling pathways and defense responses contributing to plant resistance against P. cucumerina. While it is clear that JA and ethylene contribute to basal resistance against the fungus, the exact roles of SA, ABA, and ROS in P. cucumerina resistance vary between studies (Thomma et al., 1998; Ton and Mauch-Mani, 2004; Sánchez-Vallet et al., 2012; Gamir et al., 2014).This study is based on the observation that the disease phenotype during P. cucumerina infection differs according to the inoculation method used. We provide evidence that the fungus follows a hemibiotrophic infection strategy when infecting from relatively low spore densities on the leaf surface. By contrast, when challenged by localized host defense to relatively high spore densities, the fungus switches to a necrotrophic infection program. Our study has uncovered a novel strategy by which plant-pathogenic fungi can take advantage of the early immune response in the host plant.  相似文献   

2.
3.
4.
5.
6.
7.
Fumarylacetoacetate hydrolase (FAH) hydrolyzes fumarylacetoacetate to fumarate and acetoacetate, the final step in the tyrosine (Tyr) degradation pathway that is essential to animals. Deficiency of FAH in animals results in an inborn lethal disorder. However, the role for the Tyr degradation pathway in plants remains to be elucidated. In this study, we isolated an Arabidopsis (Arabidopsis thaliana) short-day sensitive cell death1 (sscd1) mutant that displays a spontaneous cell death phenotype under short-day conditions. The SSCD1 gene was cloned via a map-based cloning approach and found to encode an Arabidopsis putative FAH. The spontaneous cell death phenotype of the sscd1 mutant was completely eliminated by further knockout of the gene encoding the putative homogentisate dioxygenase, which catalyzes homogentisate into maleylacetoacetate (the antepenultimate step) in the Tyr degradation pathway. Furthermore, treatment of Arabidopsis wild-type seedlings with succinylacetone, an abnormal metabolite caused by loss of FAH in the Tyr degradation pathway, mimicked the sscd1 cell death phenotype. These results demonstrate that disruption of FAH leads to cell death in Arabidopsis and suggest that the Tyr degradation pathway is essential for plant survival under short-day conditions.Programmed cell death (PCD) has been defined as a sequence of genetically regulated events that lead to the elimination of specific cells, tissues, or whole organs (Lockshin and Zakeri, 2004). In plants, PCD is essential for developmental processes and defense responses (Dangl et al., 1996; Greenberg, 1996; Durrant et al., 2007). One well-characterized example of plant PCD is the hypersensitive response occurring during incompatible plant-pathogen interactions (Lam, 2004), which results in cell death to form visible lesions at the site of infection by an avirulent pathogen and consequently limits the pathogen spread (Morel and Dangl, 1997).To date, a large number of mutants that display spontaneous cell death lesions have been identified in barley (Hordeum vulgare), maize (Zea mays), rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana; Marchetti et al., 1983; Wolter et al., 1993; Dietrich et al., 1994; Gray et al., 1997). Because lesions form in the absence of pathogen infection, these mutants have been collectively termed as lesion-mimic mutants. Many genes with regulatory roles in PCD and defense responses, including LESION SIMULATING DISEASE1, ACCELERATED CELL DEATH11, and VASCULAR ASSOCIATED DEATH1, have been cloned and characterized (Dietrich et al., 1997; Brodersen et al., 2002; Lorrain et al., 2004).The appearance of spontaneous cell death lesions in some lesion-mimic mutants is dependent on photoperiod. For example, the Arabidopsis mutant lesion simulating disease1 and myoinositol-1-phosphate synthase1 show lesions under long days (LD; Dietrich et al., 1994; Meng et al., 2009), whereas the lesion simulating disease2, lesion initiation1, enhancing RPW8-mediated HR-like cell death1, and lag one homolog1 display lesions under short days (SD; Dietrich et al., 1994; Ishikawa et al., 2003; Wang et al., 2008; Ternes et al., 2011).Blockage of some metabolic pathways in plants may cause cell death and result in lesion formation. For example, the lesion-mimic phenotypes in the Arabidopsis mutants lesion initiation2 and accelerated cell death2 and the maize mutant lesion mimic22 result from an impairment of porphyrin metabolism (Hu et al., 1998; Ishikawa et al., 2001; Mach et al., 2001). Deficiency in fatty acid, sphingolipid, and myoinositol metabolism also causes cell death in Arabidopsis (Mou et al., 2000; Liang et al., 2003; Wang et al., 2008; Meng et al., 2009; Donahue et al., 2010; Berkey et al., 2012).Tyr degradation is an essential five-step pathway in animals (Lindblad et al., 1977). First, Tyr aminotransferase catalyzes the conversion of Tyr into 4-hydroxyphenylpyruvate, which is further transformed into homogentisate by 4-hydroxyphenylpyruvate dioxygenase. Through the sequential action of homogentisate dioxygenase (HGO), maleylacetoacetate isomerase (MAAI), and fumarylacetoacetate hydrolase (FAH), homogentisate is catalyzed to generate fumarate and acetoacetate (Lindblad et al., 1977). Blockage of this pathway in animals results in metabolic disorder diseases (Lindblad et al., 1977; Ruppert et al., 1992; Grompe et al., 1993). For example, human FAH deficiency causes hereditary tyrosinemia type I (HT1), an inborn lethal disease (St-Louis and Tanguay, 1997). Although the homologous genes putatively encoding these enzymes exist in plants (Dixon et al., 2000; Lopukhina et al., 2001; Dixon and Edwards, 2006), it is unclear whether this pathway is essential for plant growth and development.In this study, we report the isolation and characterization of a recessive short-day sensitive cell death1 (sscd1) mutant in Arabidopsis. Map-based cloning of the corresponding gene revealed that SSCD1 encodes the Arabidopsis putative FAH. Further knockout of the gene encoding the Arabidopsis putative HGO completely eliminated the spontaneous cell death phenotype in the sscd1 mutant. Furthermore, we found that treatment of Arabidopsis wild-type seedlings with succinylacetone, an abnormal metabolite caused by loss of FAH in the Tyr degradation pathway (Lindblad et al., 1977), is able to mimic the sscd1 cell death phenotype. These results demonstrate that disruption of FAH leads to cell death in Arabidopsis and suggest that the Tyr degradation pathway is essential for plant survival under SD.  相似文献   

8.
Organelle movement and positioning play important roles in fundamental cellular activities and adaptive responses to environmental stress in plants. To optimize photosynthetic light utilization, chloroplasts move toward weak blue light (the accumulation response) and escape from strong blue light (the avoidance response). Nuclei also move in response to strong blue light by utilizing the light-induced movement of attached plastids in leaf cells. Blue light receptor phototropins and several factors for chloroplast photorelocation movement have been identified through molecular genetic analysis of Arabidopsis (Arabidopsis thaliana). PLASTID MOVEMENT IMPAIRED1 (PMI1) is a plant-specific C2-domain protein that is required for efficient chloroplast photorelocation movement. There are two PLASTID MOVEMENT IMPAIRED1-RELATED (PMIR) genes, PMIR1 and PMIR2, in the Arabidopsis genome. However, the mechanism in which PMI1 regulates chloroplast and nuclear photorelocation movements and the involvement of PMIR1 and PMIR2 in these organelle movements remained unknown. Here, we analyzed chloroplast and nuclear photorelocation movements in mutant lines of PMI1, PMIR1, and PMIR2. In mesophyll cells, the pmi1 single mutant showed severe defects in both chloroplast and nuclear photorelocation movements resulting from the impaired regulation of chloroplast-actin filaments. In pavement cells, pmi1 mutant plants were partially defective in both plastid and nuclear photorelocation movements, but pmi1pmir1 and pmi1pmir1pmir2 mutant lines lacked the blue light-induced movement responses of plastids and nuclei completely. These results indicated that PMI1 is essential for chloroplast and nuclear photorelocation movements in mesophyll cells and that both PMI1 and PMIR1 are indispensable for photorelocation movements of plastids and thus, nuclei in pavement cells.In plants, organelles move within the cell and become appropriately positioned to accomplish their functions and adapt to the environment (for review, see Wada and Suetsugu, 2004). Light-induced chloroplast movement (chloroplast photorelocation movement) is one of the best characterized organelle movements in plants (Suetsugu and Wada, 2012). Under weak light conditions, chloroplasts move toward light to capture light efficiently (the accumulation response; Zurzycki, 1955). Under strong light conditions, chloroplasts escape from light to avoid photodamage (the avoidance response; Kasahara et al., 2002; Sztatelman et al., 2010; Davis and Hangarter, 2012; Cazzaniga et al., 2013). In most green plant species, these responses are induced primarily by the blue light receptor phototropin (phot) in response to a range of wavelengths from UVA to blue light (approximately 320–500 nm; for review, see Suetsugu and Wada, 2012; Wada and Suetsugu, 2013; Kong and Wada, 2014). Phot-mediated chloroplast movement has been shown in land plants, such as Arabidopsis (Arabidopsis thaliana; Jarillo et al., 2001; Kagawa et al., 2001; Sakai et al., 2001), the fern Adiantum capillus-veneris (Kagawa et al., 2004), the moss Physcomitrella patens (Kasahara et al., 2004), and the liverwort Marchantia polymorpha (Komatsu et al., 2014). Two phots in Arabidopsis, phot1 and phot2, redundantly mediate the accumulation response (Sakai et al., 2001), whereas phot2 primarily regulates the avoidance response (Jarillo et al., 2001; Kagawa et al., 2001; Luesse et al., 2010). M. polymorpha has only one phot that mediates both the accumulation and avoidance responses (Komatsu et al., 2014), although two or more phots mediate chloroplast photorelocation movement in A. capillus-veneris (Kagawa et al., 2004) and P. patens (Kasahara et al., 2004). Thus, duplication and functional diversification of PHOT genes have occurred during land plant evolution, and plants have gained a sophisticated light sensing system for chloroplast photorelocation movement.In general, movements of plant organelles, including chloroplasts, are dependent on actin filaments (for review, see Wada and Suetsugu, 2004). Most organelles common in eukaryotes, such as mitochondria, peroxisomes, and Golgi bodies, use the myosin motor for their movements, but there is no clear evidence that chloroplast movement is myosin dependent (for review, see Suetsugu et al., 2010a). Land plants have innovated a novel actin-based motility system that is specialized for chloroplast movement as well as a photoreceptor system (for review, see Suetsugu et al., 2010a; Wada and Suetsugu, 2013; Kong and Wada, 2014). Chloroplast-actin (cp-actin) filaments, which were first found in Arabidopsis, are short actin filaments specifically localized around the chloroplast periphery at the interface between the chloroplast and the plasma membrane (Kadota et al., 2009). Strong blue light induces the rapid disappearance of cp-actin filaments and then, their subsequent reappearance preferentially at the front region of the moving chloroplasts. This asymmetric distribution of cp-actin filaments is essential for directional chloroplast movement (Kadota et al., 2009; Kong et al., 2013a). The greater the difference in the amount of cp-actin filaments between the front and rear regions of chloroplasts becomes, the faster the chloroplasts move, in which the magnitude of the difference is determined by fluence rate (Kagawa and Wada, 2004; Kadota et al., 2009; Kong et al., 2013a). Strong blue light-induced disappearance of cp-actin filaments is regulated in a phot2-dependent manner before the intensive polymerization of cp-actin filaments at the front region occurs (Kadota et al., 2009; Ichikawa et al., 2011; Kong et al., 2013a). This phot2-dependent response contributes to the greater difference in the amount of cp-actin filaments between the front and rear regions of chloroplasts. Similar behavior of cp-actin filaments has also been observed in A. capillus-veneris (Tsuboi and Wada, 2012) and P. patens (Yamashita et al., 2011).Like chloroplasts, nuclei also show light-mediated movement and positioning (nuclear photorelocation movement) in land plants (for review, see Higa et al., 2014b). In gametophytic cells of A. capillus-veneris, weak light induced the accumulation responses of both chloroplasts and nuclei, whereas strong light induced avoidance responses (Kagawa and Wada, 1993, 1995; Tsuboi et al., 2007). However, in mesophyll cells of Arabidopsis, strong blue light induced both chloroplast and nuclear avoidance responses, but weak blue light induced only the chloroplast accumulation response (Iwabuchi et al., 2007, 2010; Higa et al., 2014a). In Arabidopsis pavement cells, small numbers of tiny plastids were found and showed autofluorescence under the confocal laser-scanning microscopy (Iwabuchi et al., 2010; Higa et al., 2014a). Hereafter, the plastid in the pavement cells is called the pavement cell plastid. Strong blue light-induced avoidance responses of pavement cell plastids and nuclei were induced in a phot2-dependent manner, but the accumulation response was not detected for either organelle (Iwabuchi et al., 2007, 2010; Higa et al., 2014a). In both Arabidopsis and A. capillus-veneris, phots mediate nuclear photorelocation movement, and phot2 mediates the nuclear avoidance response (Iwabuchi et al., 2007, 2010; Tsuboi et al., 2007). The nuclear avoidance response is dependent on actin filaments in both mesophyll and pavement cells of Arabidopsis (Iwabuchi et al., 2010). Recently, it was shown that the nuclear avoidance response relies on cp-actin-dependent movement of pavement cell plastids, where nuclei are associated with pavement cell plastids of Arabidopsis (Higa et al., 2014a). In mesophyll cells, nuclear avoidance response is likely dependent on cp-actin filament-mediated chloroplast movement, because the mutants deficient in chloroplast movement were also defective in nuclear avoidance response (Higa et al., 2014a). Thus, phots mediate both chloroplast (and pavement cell plastid) and nuclear photorelocation movement by regulating cp-actin filaments.Molecular genetic analyses of Arabidopsis mutants deficient in chloroplast photorelocation movement have identified many molecular factors involved in signal transduction and/or motility systems as well as those involved in the photoreceptor system for chloroplast photorelocation movement (and thus, nuclear photorelocation movement; for review, see Suetsugu and Wada, 2012; Wada and Suetsugu, 2013; Kong and Wada, 2014). CHLOROPLAST UNUSUAL POSITIONING1 (CHUP1; Oikawa et al., 2003) and KINESIN-LIKE PROTEIN FOR ACTIN-BASED CHLOROPLAST MOVEMENT (KAC; Suetsugu et al., 2010b) are key factors for generating and/or maintaining cp-actin filaments. Both proteins are highly conserved in land plants and essential for the movement and attachment of chloroplasts to the plasma membrane in Arabidopsis (Oikawa et al., 2003, 2008; Suetsugu et al., 2010b), A. capillus-veneris (Suetsugu et al., 2012), and P. patens (Suetsugu et al., 2012; Usami et al., 2012). CHUP1 is localized on the chloroplast outer membrane and binds to globular and filamentous actins and profilin in vitro (Oikawa et al., 2003, 2008; Schmidt von Braun and Schleiff, 2008). Although KAC is a kinesin-like protein, it lacks microtubule-dependent motor activity but has filamentous actin binding activity (Suetsugu et al., 2010b). An actin-bundling protein THRUMIN1 (THRUM1) is required for efficient chloroplast photorelocation movement (Whippo et al., 2011) and interacts with cp-actin filaments (Kong et al., 2013a). chup1 and kac mutant plants were shown to lack detectable cp-actin filaments (Kadota et al., 2009; Suetsugu et al., 2010b; Ichikawa et al., 2011; Kong et al., 2013a). Similarly, cp-actin filaments were rarely detected in thrum1 mutant plants (Kong et al., 2013a), indicating that THRUM1 also plays an important role in maintaining cp-actin filaments.Other proteins J-DOMAIN PROTEIN REQUIRED FOR CHLOROPLAST ACCUMULATION RESPONSE1 (JAC1; Suetsugu et al., 2005), WEAK CHLOROPLAST MOVEMENT UNDER BLUE LIGHT1 (WEB1; Kodama et al., 2010), and PLASTID MOVEMENT IMPAIRED2 (PMI2; Luesse et al., 2006; Kodama et al., 2010) are involved in the light regulation of cp-actin filaments and chloroplast photorelocation movement. JAC1 is an auxilin-like J-domain protein that mediates the chloroplast accumulation response through its J-domain function (Suetsugu et al., 2005; Takano et al., 2010). WEB1 and PMI2 are coiled-coil proteins that interact with each other (Kodama et al., 2010). Although web1 and pmi2 were partially defective in the avoidance response, the jac1 mutation completely suppressed the phenotype of web1 and pmi2, suggesting that the WEB1/PMI2 complex suppresses JAC1 function (i.e. the accumulation response) under strong light conditions (Kodama et al., 2010). Both web1 and pmi2 showed impaired disappearance of cp-actin filaments in response to strong blue light (Kodama et al., 2010). However, the exact molecular functions of these proteins are unknown.In this study, we characterized mutant plants deficient in the PMI1 gene and two homologous genes PLASTID MOVEMENT IMPAIRED1-RELATED1 (PMIR1) and PMIR2. PMI1 was identified through molecular genetic analyses of pmi1 mutants that showed severe defects in chloroplast accumulation and avoidance responses (DeBlasio et al., 2005). PMI1 is a plant-specific C2-domain protein (DeBlasio et al., 2005; Zhang and Aravind, 2010), but its roles and those of PMIRs in cp-actin-mediated chloroplast and nuclear photorelocation movements remained unclear. Thus, we analyzed chloroplast and nuclear photorelocation movements in the single, double, and triple mutants of pmi1, pmir1, and pmir2.  相似文献   

9.
10.
11.
Abscisic acid (ABA) induces stomatal closure and inhibits light-induced stomatal opening. The mechanisms in these two processes are not necessarily the same. It has been postulated that the ABA receptors involved in opening inhibition are different from those involved in closure induction. Here, we provide evidence that four recently identified ABA receptors (PYRABACTIN RESISTANCE1 [PYR1], PYRABACTIN RESISTANCE-LIKE1 [PYL1], PYL2, and PYL4) are not sufficient for opening inhibition in Arabidopsis (Arabidopsis thaliana). ABA-induced stomatal closure was impaired in the pyr1/pyl1/pyl2/pyl4 quadruple ABA receptor mutant. ABA inhibition of the opening of the mutant’s stomata remained intact. ABA did not induce either the production of reactive oxygen species and nitric oxide or the alkalization of the cytosol in the quadruple mutant, in accordance with the closure phenotype. Whole cell patch-clamp analysis of inward-rectifying K+ current in guard cells showed a partial inhibition by ABA, indicating that the ABA sensitivity of the mutant was not fully impaired. ABA substantially inhibited blue light-induced phosphorylation of H+-ATPase in guard cells in both the mutant and the wild type. On the other hand, in a knockout mutant of the SNF1-related protein kinase, srk2e, stomatal opening and closure, reactive oxygen species and nitric oxide production, cytosolic alkalization, inward-rectifying K+ current inactivation, and H+-ATPase phosphorylation were not sensitive to ABA.The phytohormone abscisic acid (ABA), which is synthesized in response to abiotic stresses, plays a key role in the drought hardiness of plants. Reducing transpirational water loss through stomatal pores is a major ABA response (Schroeder et al., 2001). ABA promotes the closure of open stomata and inhibits the opening of closed stomata. These effects are not simply the reverse of one another (Allen et al., 1999; Wang et al., 2001; Mishra et al., 2006).A class of receptors of ABA was identified (Ma et al., 2009; Park et al., 2009; Santiago et al., 2009; Nishimura et al., 2010). The sensitivity of stomata to ABA was strongly decreased in quadruple and sextuple mutants of the ABA receptor genes PYRABACTIN RESISTANCE/PYRABACTIN RESISTANCE-LIKE/REGULATORY COMPONENT OF ABSCISIC ACID RECEPTOR (PYR/PYL/RCAR; Nishimura et al., 2010; Gonzalez-Guzman et al., 2012). The PYR/PYL/RCAR receptors are involved in the early ABA signaling events, in which a sequence of interactions of the receptors with PROTEIN PHOSPHATASE 2Cs (PP2Cs) and subfamily 2 SNF1-RELATED PROTEIN KINASES (SnRK2s) leads to the activation of downstream ABA signaling targets in guard cells (Cutler et al., 2010; Kim et al., 2010; Weiner et al., 2010). Studies of Commelina communis and Vicia faba suggested that the ABA receptors involved in stomatal opening are not the same as the ABA receptors involved in stomatal closure (Allan et al., 1994; Anderson et al., 1994; Assmann, 1994; Schwartz et al., 1994). The roles of PYR/PYL/RCAR in either stomatal opening or closure remained to be elucidated.Blue light induces stomatal opening through the activation of plasma membrane H+-ATPase in guard cells that generates an inside-negative electrochemical gradient across the plasma membrane and drives K+ uptake through voltage-dependent inward-rectifying K+ channels (Assmann et al., 1985; Shimazaki et al., 1986; Blatt, 1987; Schroeder et al., 1987; Thiel et al., 1992). Phosphorylation of the penultimate Thr of the plasma membrane H+-ATPase is a prerequisite for blue light-induced activation of the H+-ATPase (Kinoshita and Shimazaki, 1999, 2002). ABA inhibits H+-ATPase activity through dephosphorylation of the penultimate Thr in the C terminus of the H+-ATPase in guard cells, resulting in prevention of the opening (Goh et al., 1996; Zhang et al., 2004; Hayashi et al., 2011). Inward-rectifying K+ currents (IKin) of guard cells are negatively regulated by ABA in addition to through the decline of the H+ pump-driven membrane potential difference (Schroeder and Hagiwara, 1989; Blatt, 1990; McAinsh et al., 1990; Schwartz et al., 1994; Grabov and Blatt, 1999; Saito et al., 2008). This down-regulation of ion transporters by ABA is essential for the inhibition of stomatal opening.A series of second messengers has been shown to mediate ABA-induced stomatal closure. Reactive oxygen species (ROS) produced by NADPH oxidases play a crucial role in ABA signaling in guard cells (Pei et al., 2000; Zhang et al., 2001; Kwak et al., 2003; Sirichandra et al., 2009; Jannat et al., 2011). Nitric oxide (NO) is an essential signaling component in ABA-induced stomatal closure (Desikan et al., 2002; Guo et al., 2003; Garcia-Mata and Lamattina, 2007; Neill et al., 2008). Alkalization of cytosolic pH in guard cells is postulated to mediate ABA-induced stomatal closure in Arabidopsis (Arabidopsis thaliana) and Pisum sativum and Paphiopedilum species (Irving et al., 1992; Gehring et al., 1997; Grabov and Blatt, 1997; Suhita et al., 2004; Gonugunta et al., 2008). These second messengers transduce environmental signals to ion channels and ion transporters that create the driving force for stomatal movements (Ward et al., 1995; MacRobbie, 1998; Garcia-Mata et al., 2003).In this study, we examined the mobilization of second messengers, the inactivation of IKin, and the suppression of H+-ATPase phosphorylation evoked by ABA in Arabidopsis mutants to clarify the downstream signaling events of ABA signaling in guard cells. The mutants included a quadruple mutant of PYR/PYL/RCARs, pyr1/pyl1/pyl2/pyl4, and a mutant of a SnRK2 kinase, srk2e.  相似文献   

12.
13.
Although cytokinesis is vital for plant growth and development, our mechanistic understanding of the highly regulated membrane and cargo transport mechanisms in relation to polysaccharide deposition during this process is limited. Here, we present an in-depth characterization of the small molecule endosidin 7 (ES7) inhibiting callose synthase activity and arresting late cytokinesis both in vitro and in vivo in Arabidopsis (Arabidopsis thaliana). ES7 is a specific inhibitor for plant callose deposition during cytokinesis that does not affect endomembrane trafficking during interphase or cytoskeletal organization. The specificity of ES7 was demonstrated (1) by comparing its action with that of known inhibitors such as caffeine, flufenacet, and concanamycin A and (2) across kingdoms with a comparison in yeast. The interplay between cell plate-specific post-Golgi vesicle traffic and callose accumulation was analyzed using ES7, and it revealed unique and temporal contributions of secretory and endosomal vesicles in cell plate maturation. While RABA2A-labeled vesicles, which accumulate at the early stage of cell plate formation, were not affected by ES7, KNOLLE was differentially altered by the small molecule. In addition, the presence of clathrin-coated vesicles in cells containing elevated levels of callose and their reduction under ES7 treatment further support the role of endocytic membrane remodeling in the maturing cell plate while the plate is stabilized by callose. Taken together, these data show the essential role of callose during the late stages of cell plate maturation and establish the temporal relationship between vesicles and regulatory proteins at the cell plate assembly matrix during polysaccharide deposition.During plant cytokinesis, the de novo formation of a new cell wall partitions the cytoplasm of the dividing cell (Staehelin and Hepler, 1996; Jürgens, 2005). The formation of the transient cell plate structure is a complex multistep process (Samuels et al., 1995; Jürgens, 2005). At the end of late anaphase, vesicle delivery is guided by the phragmoplast to the center of the dividing cell, the cell plate assembly matrix (CPAM; Samuels et al., 1995). Vesicles at the CPAM undergo homotypic fusion and fission, contributing to the formation of the incipient cell plate (Jürgens, 2005). The initial vesicular fusion and fission events (fusion of Golgi-derived vesicles stage [FVS]) lead to the formation of a tubulovesicular network (TVN), which undergoes a morphological change to form a tubular network (TN). Callose deposition starts during this stage (Supplemental Fig. S1), which is thought to provide mechanical support to the membrane network that ultimately results in the planar fenestrated sheet (PFS). The cell plate expands centrifugally by the accumulation and fusion of newly arriving vesicles at its leading edge. This process is accompanied by the accumulation of new polysaccharides and the removal of excess material maturing at the center. Separation of the daughter cells concludes by fusion of the cell plate with the parental plasma membrane (Samuels et al., 1995).A vast amount of proteins including those involved in vesicle trafficking participate in cell plate formation (McMichael and Bednarek, 2013). Vesicle fusion with the target membrane is mediated by the formation of Soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor (SNARE) complexes (Bassham and Blatt, 2008). The well-characterized SNARE complex at the cell plate comprises the Q-SNARE KNOLLE and the functionally redundant R-SNARES, the vesicle-associated membrane proteins VAMP721 and VAMP722 (Lauber et al., 1997; Zhang et al., 2011; El Kasmi et al., 2013). The SEC1/Munc18 protein KEULLE, the Soluble N-ethylmaleimide-sensitive factor adaptor protein33, and the novel plant-specific SNARE11 (Assaad et al., 2001; Heese et al., 2001; Zheng et al., 2002) play a role in this SNARE complex formation. Of all the SNAREs required for vesicle fusion at the cell plate, only KNOLLE has been shown to function exclusively in cytokinesis.The formation of the cell plate requires specific amounts of vesicle-delivered membrane and other secretory products. The GTPase RABA2A is necessary for the delivery of trans-Golgi network (TGN)-derived vesicles to the cell plate leading edge (Chow et al., 2008). However, due to the excess delivery of material arriving at the cell plate formation site, it is estimated that 70% is recycled (Samuels et al., 1995; Otegui et al., 2001). Electron microscopy observations indicate the role of clathrin-coated vesicles (CCVs) in the removal and/or recycling of excess membranes from the cell plate (Samuels et al., 1995; Otegui and Staehelin, 2004; Seguí-Simarro et al., 2004). Specifically, clathrin light chain (CLC), dynamin-related proteins (DRPs), the adaptin-like TPLATE, and AP180 amino-terminal homology/epsin amino-terminal homology domain-containing protein have been identified at the cell plate, providing evidence that clathrin-mediated endocytosis facilitates this membrane recycling (Konopka et al., 2008; Konopka and Bednarek, 2008; Fujimoto et al., 2010; Van Damme et al., 2011; Ito et al., 2012; Song et al., 2012; McMichael and Bednarek, 2013). In addition, it has been suggested that plasma membrane endocytosis contributes material toward de novo cell plate formation (Dhonukshe et al., 2006). However, the level of endocytosis involvement remains questionable, as pharmacological inhibition of endocytosis does not interfere with cytokinesis (Reichardt et al., 2007). The temporal association of different vesicle populations at the CPAM might provide further insights into their contribution to the forming cell plate.Despite the large number of studies investigating membrane dynamics, relatively few studies exist on polysaccharide deposition during cell plate maturation. It has been suggested that callose, a (1,3)-β-glucan, stabilizes the delicate tubular network during the initial cell plate formation stage, until the deposition of additional polysaccharides increases its rigidity (Samuels et al., 1995). Callose accumulation is transient, with the polymer being removed once other polysaccharides such as hemicelluloses, pectins, and cellulose are deposited at the cell plate (Supplemental Fig. S1; Samuels et al., 1995; Albersheim et al., 2010). The timing of callose deposition at the cell plate in relation to that of vesicle trafficking that contributes to cell plate formation is unknown.Genetic studies have indicated a role of callose accumulation at the cell plate (Chen et al., 2009; Thiele et al., 2009; Guseman et al., 2010). However, the lethality of mutant alleles for the callose synthase/glucan synthase-like family (GSL) has hampered the detailed examination of the role of callose synthase and its product in cell plate maturation (Verma and Hong, 2001; Chen et al., 2009; Thiele et al., 2009; Guseman et al., 2010). The ability to transiently perturb callose deposition at the cell plate is key to understanding callose’s contribution to the separation of the daughter cells compared with other polysaccharides.Here, we used pharmacological inhibitors to overcome the challenges of the lethality of callose synthase mutants. In a high-throughput confocal microscopy-based screen for small molecules affecting endosomal trafficking (Drakakaki et al., 2011), endosidin 7 (ES7) was identified as an inhibitor of cell plate formation. ES7 induces characteristic cell plate gaps, observable by the mislocalization of KNOLLE and RABA2A, while it does not affect the localization of endomembrane compartment markers in interphase cells. The potential of ES7 to inhibit callose deposition at the cell plate (Drakakaki et al., 2011) provides avenues to study cell plate maturation. We have characterized the activity of ES7 using both in vitro and in vivo studies establishing its inhibitory effects on callose biosynthesis. We have exploited the properties of ES7 to characterize in detail callose deposition at the cell plate, thereby providing further insight into the overall cell plate formation process. Our results conclusively show that callose is essential for the later stages of cell plate maturation and lay out the temporal association and interplay of TGN and endosomal vesicles during polysaccharide deposition.  相似文献   

14.
15.
16.
17.
18.
19.
Plant metabolism is characterized by a unique complexity on the cellular, tissue, and organ levels. On a whole-plant scale, changing source and sink relations accompanying plant development add another level of complexity to metabolism. With the aim of achieving a spatiotemporal resolution of source-sink interactions in crop plant metabolism, a multiscale metabolic modeling (MMM) approach was applied that integrates static organ-specific models with a whole-plant dynamic model. Allowing for a dynamic flux balance analysis on a whole-plant scale, the MMM approach was used to decipher the metabolic behavior of source and sink organs during the generative phase of the barley (Hordeum vulgare) plant. It reveals a sink-to-source shift of the barley stem caused by the senescence-related decrease in leaf source capacity, which is not sufficient to meet the nutrient requirements of sink organs such as the growing seed. The MMM platform represents a novel approach for the in silico analysis of metabolism on a whole-plant level, allowing for a systemic, spatiotemporally resolved understanding of metabolic processes involved in carbon partitioning, thus providing a novel tool for studying yield stability and crop improvement.Plants are of vital significance as a source of food (Grusak and DellaPenna, 1999; Rogalski and Carrer, 2011), feed (Lu et al., 2011), energy (Tilman et al., 2006; Parmar et al., 2011), and feedstocks for the chemical industry (Metzger and Bornscheuer, 2006; Kinghorn et al., 2011). Given the close connection between plant metabolism and the usability of plant products, there is a growing interest in understanding and predicting the behavior and regulation of plant metabolic processes. In order to increase crop quality and yield, there is a need for methods guiding the rational redesign of the plant metabolic network (Schwender, 2009).Mathematical modeling of plant metabolism offers new approaches to understand, predict, and modify complex plant metabolic processes. In plant research, the issue of metabolic modeling is constantly gaining attention, and different modeling approaches applied to plant metabolism exist, ranging from highly detailed quantitative to less complex qualitative approaches (for review, see Giersch, 2000; Morgan and Rhodes, 2002; Poolman et al., 2004; Rios-Estepa and Lange, 2007).A widely used modeling approach is flux balance analysis (FBA), which allows the prediction of metabolic capabilities and steady-state fluxes under different environmental and genetic backgrounds using (non)linear optimization (Orth et al., 2010). Assuming steady-state conditions, FBA has the advantage of not requiring the knowledge of kinetic parameters and, therefore, can be applied to model detailed, large-scale systems. In recent years, the FBA approach has been applied to several different plant species, such as maize (Zea mays; Dal’Molin et al., 2010; Saha et al., 2011), barley (Hordeum vulgare; Grafahrend-Belau et al., 2009b; Melkus et al., 2011; Rolletschek et al., 2011), rice (Oryza sativa; Lakshmanan et al., 2013), Arabidopsis (Arabidopsis thaliana; Poolman et al., 2009; de Oliveira Dal’Molin et al., 2010; Radrich et al., 2010; Williams et al., 2010; Mintz-Oron et al., 2012; Cheung et al., 2013), and rapeseed (Brassica napus; Hay and Schwender, 2011a, 2011b; Pilalis et al., 2011), as well as algae (Boyle and Morgan, 2009; Cogne et al., 2011; Dal’Molin et al., 2011) and photoautotrophic bacteria (Knoop et al., 2010; Montagud et al., 2010; Boyle and Morgan, 2011). These models have been used to study different aspects of metabolism, including the prediction of optimal metabolic yields and energy efficiencies (Dal’Molin et al., 2010; Boyle and Morgan, 2011), changes in flux under different environmental and genetic backgrounds (Grafahrend-Belau et al., 2009b; Dal’Molin et al., 2010; Melkus et al., 2011), and nonintuitive metabolic pathways that merit subsequent experimental investigations (Poolman et al., 2009; Knoop et al., 2010; Rolletschek et al., 2011). Although FBA of plant metabolic models was shown to be capable of reproducing experimentally determined flux distributions (Williams et al., 2010; Hay and Schwender, 2011b) and generating new insights into metabolic behavior, capacities, and efficiencies (Sweetlove and Ratcliffe, 2011), challenges remain to advance the utility and predictive power of the models.Given that many plant metabolic functions are based on interactions between different subcellular compartments, cell types, tissues, and organs, the reconstruction of organ-specific models and the integration of these models into interacting multiorgan and/or whole-plant models is a prerequisite to get insight into complex plant metabolic processes organized on a whole-plant scale (e.g. source-sink interactions). Almost all FBA models of plant metabolism are restricted to one cell type (Boyle and Morgan, 2009; Knoop et al., 2010; Montagud et al., 2010; Cogne et al., 2011; Dal’Molin et al., 2011), one tissue or one organ (Grafahrend-Belau et al., 2009b; Hay and Schwender, 2011a, 2011b; Pilalis et al., 2011; Mintz-Oron et al., 2012), and only one model exists taking into account the interaction between two cell types by specifying the interaction between mesophyll and bundle sheath cells in C4 photosynthesis (Dal’Molin et al., 2010). So far, no model representing metabolism at the whole-plant scale exists.Considering whole-plant metabolism raises the problem of taking into account temporal and environmental changes in metabolism during plant development and growth. Although classical static FBA is unable to predict the dynamics of metabolic processes, as the network analysis is based on steady-state solutions, time-dependent processes can be taken into account by extending the classical static FBA to a dynamic flux balance analysis (dFBA), as proposed by Mahadevan et al. (2002). The static (SOA) and dynamic optimization approaches introduced in this work provide a framework for analyzing the transience of metabolism by integrating kinetic expressions to dynamically constrain exchange fluxes. Due to the requirement of knowing or estimating a large number of kinetic parameters, so far dFBA has only been applied to a plant metabolic model once, to study the photosynthetic metabolism in the chloroplasts of C3 plants by a simplified model of five biochemical reactions (Luo et al., 2009). Integrating a dynamic model into a static FBA model is an alternative approach to perform dFBA.In this study, a multiscale metabolic modeling (MMM) approach was applied with the aim of achieving a spatiotemporal resolution of cereal crop plant metabolism. To provide a framework for the in silico analysis of the metabolic dynamics of barley on a whole-plant scale, the MMM approach integrates a static multiorgan FBA model and a dynamic whole-plant multiscale functional plant model (FPM) to perform dFBA. The performance of the novel whole-plant MMM approach was tested by studying source-sink interactions during the seed developmental phase of barley plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号