首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For almost a decade, there has been much interest in the development of chemical inhibitors of Polo-like kinase 1 (Plk1) protein interactions. Plk1 is a master regulator of the cell division cycle that controls numerous substrates. It is a promising target for cancer drug development. Inhibitors of the kinase domain of Plk1 had some success in clinical trials. However, they are not perfectly selective. In principle, Plk1 can also be inhibited by interfering with its protein interaction domain, the Polo-Box Domain (PBD). Selective chemical inhibitors of the PBD would constitute tools to probe for PBD-dependent functions of Plk1 and could be advantageous in cancer therapy. The discovery of Poloxin and thymoquinone as PBD inhibitors indicated that small, cell-permeable chemical inhibitors could be identified. Other efforts followed, including ours, reporting additional molecules capable of blocking the PBD. It is now clear that, unfortunately, most of these compounds are non-specific protein alkylators (defined here as groups covalently added via a carbon) that have little or no potential for the development of real Plk1 PBD-specific drugs. This situation should be minded by biologists potentially interested in using these compounds to study Plk1. Further efforts are needed to develop selective, cell-permeable PBD inhibitors.  相似文献   

2.
Mammalian polo-like kinase 1 (Plk1) has been studied extensively as a critical element in regulating various mitotic events during M-phase progression. Plk1 function is spatially regulated through the targeting activity of the conserved polo-box domain (PBD) present in the C-terminal non-catalytic region. Recent progress in our understanding of Plk1 localization to the centromeres shows that Plk1 self-regulates its initial recruitment by phosphorylating a centromeric component PBIP1 and generating its own PBD-binding site. Paradoxically, Plk1 also induces PBIP1 delocalization and degradation from the mitotic kinetochores late in the cell cycle, consequently permitting itself to bind to other kinetochore components. Thus, PBIP1-dependent self-recruitment of Plk1 to the interphase centromeres serves as a prelude to the efficient delivery of Plk1 itself to other kinetochore components whose interactions with Plk1 are vital for proper mitotic progression.  相似文献   

3.
Mammalian polo-like kinases (Plks) are characterized by the presence of an N-terminal protein kinase domain and a C-terminal polo-box domain (PBD) involved in substrate binding and regulation of kinase activity. Plk1-4 have traditionally been linked to cell cycle progression, genotoxic stress and, more recently, neuron biology. Recently, a fifth mammalian Plk family member, Plk5, has been characterized in murine and human cells. Plk5 is expressed mainly in differentiated tissues such as the cerebellum. Despite apparent loss of catalytic activity and a stop codon in the middle of the human gene, Plk5 proteins retain important functions in neuron biology. Notably, its expression is silenced by epigenetic alterations in brain tumors, such as glioblastomas, and its re-expression prevents cell proliferation of these tumor cells. In this review, we will focus on the non-cell cycle roles of Plks, the biology of the new member of the family and the possible kinase- and PBD-independent functions of polo-like kinases.Key words: cell cycle, kinase evolution, neuron differentiation, polo-box domain, polo-like kinases, tumor suppression  相似文献   

4.
Mammalian polo-like kinases (Plks) are characterized by the presence of an N-terminal protein kinase domain and a C-terminal polo-box domain (PBD) involved in substrate binding and regulation of kinase activity. Plk1-4 have traditionally been linked to cell cycle progression, genotoxic stress and, more recently, neuron biology. Recently, a fifth mammalian Plk family member, Plk5, has been characterized in murine and human cells. Plk5 is expressed mainly in differentiated tissues such as the cerebellum. Despite apparent loss of catalytic activity and a stop codon in the middle of the human gene, Plk5 proteins retain important functions in neuron biology. Notably, its expression is silenced by epigenetic alterations in brain tumors, such as glioblastomas, and its re-expression prevents cell proliferation of these tumor cells. In this review, we will focus on the non-cell cycle roles of Plks, the biology of the new member of the family and the possible kinase- and PBD-independent functions of polo-like kinases.  相似文献   

5.
Mammalian polo-like kinase 1 (Plk1) has been studied intensively as a key element in regulating diverse mitotic events during M-phase progression. Plk1 is spatially regulated through the targeting activity of the conserved polo-box domain (PBD) present in the C-terminal non-catalytic region. Over the years, studies have demonstrated that the PBD forms a phospho-epitope binding module and the PBD-dependent interaction is critical for proper subcellular localization of Plk1. The current prevailing model is that the PBD binds to a phospho-epitope generated by Cdc2 or other Pro-directed kinases. Here we discuss a recent finding that Plk1 also self-promotes its localization by generating its own PBD-docking site.  相似文献   

6.
Mitosis is coordinated by carefully controlled phosphorylation and ubiquitin-mediated proteolysis. Polo-like kinase 1 (Plk1) plays a central role in regulating mitosis and cytokinesis by phosphorylating target proteins. Yet, Plk1 is itself a target for posttranslational modification by phosphorylation and ubiquitination. We developed a chemical-genetic complementation assay to evaluate the functional significance of 34 posttranslational modifications (PTMs) on human Plk1. To do this, we used human cells that solely express a modified analog-sensitive Plk1 (Plk1AS) and complemented with wildtype Plk1. The wildtype Plk1 provides cells with a functional Plk1 allele in the presence of 3-MB-PP1, a bulky ATP-analog inhibitor that specifically inhibits Plk1AS. Using this approach, we evaluated the ability of 34 singly non-modifiable Plk1 mutants to complement Plk1AS in the presence of 3-MB-PP1. Mutation of the T-loop activating residue T210 and adjacent T214 are lethal, but surprisingly individual mutation of the remaining 32 posttranslational modification sites did not disrupt the essential functions of Plk1. To evaluate redundancy, we simultaneously mutated all phosphorylation sites in the kinase domain except for T210 and T214 or all sites in the C-terminal polo-box domain (PBD). We discovered that redundant phosphorylation events within the kinase domain are required for accurate chromosome segregation in anaphase but those in the PBD are dispensable. We conclude that PTMs within the T-loop of Plk1 are essential and nonredundant, additional modifications in the kinase domain provide redundant control of Plk1 function, and those in the PBD are dispensable for essential mitotic functions of Plk1. This comprehensive evaluation of Plk1 modifications demonstrates that although phosphorylation and ubiquitination are important for mitotic progression, many individual PTMs detected in human tissue may have redundant, subtle, or dispensable roles in gene function.  相似文献   

7.
8.
Polo-like kinase 1 (Plk1) has multiple important functions during M-phase progression. In addition to a catalytic domain, Plk1 possesses a phosphopeptide-binding motif, the polo-box domain (PBD), which is required for proper localization. Here, we have explored the importance of correct Plk1 subcellular targeting for its mitotic functions. We either displaced endogenous Plk1 through overexpression of the PBD or introduced the catalytic domain of Plk1, lacking the PBD, into Plk1-depleted cells. Both treatments resulted in remarkably similar phenotypes, which were distinct from the Plk1 depletion phenotype. Cells depleted of Plk1 mostly arrested with monoastral spindles, because of inhibition of centrosome maturation and separation. In contrast, these functions were not impaired in cells with mislocalized Plk1. Instead, these latter cells showed a checkpoint-dependent mitotic arrest characterized by impaired chromosome congression. Thus, whereas chromosome congression requires localized Plk1 activity, other investigated Plk1 functions are less dependent on correct PBD-mediated targeting. This opens the possibility that PBD-directed drugs might be developed to selectively interfere with a subset of Plk1 functions.  相似文献   

9.
Polo-like kinase 1 (Plk1) plays a critical role in proper M-phase progression and cell proliferation. Plk1 is overexpressed in a broad spectrum of human cancers and is considered an attractive anticancer drug target. Although a large number of inhibitors targeting the catalytic domain of Plk1 have been developed, these inhibitors commonly exhibit a substantial level of cross-reactivity with other structurally related kinases, thus narrowing their applicable dose for patient treatment. Plk1 contains a C-terminal polo-box domain (PBD) that is essentially required for interacting with its binding targets. However, largely due to the lack of both specific and membrane-permeable inhibitors, whether PBD serves as an alternative target for the development of anticancer therapeutics has not been rigorously examined. Here, we used an intracellularly expressed 29-mer-long PBIP1-derived peptide (i.e., PBIPtide), which can be converted into a “suicidal” PBD inhibitor via Plk1-dependent self-priming and binding. Using this highly specific and potent system, we showed that Plk1 PBD inhibition alone is sufficient for inducing mitotic arrest and apoptotic cell death in cancer cells but not in normal cells, and that cancer cell–selective killing can occur regardless of the presence or absence of oncogenic RAS mutation. Intriguingly, PBD inhibition also effectively prevented anchorage-independent growth of malignant cancer cells. Thus, targeting PBD represents an appealing strategy for anti-Plk1 inhibitor development. Additionally, PBD inhibition–induced cancer cell–selective killing may not simply stem from activated RAS alone but, rather, from multiple altered biochemical and physiological mechanisms, which may have collectively contributed to Plk1 addiction in cancer cells.  相似文献   

10.
Johnson TM  Antrobus R  Johnson LN 《Biochemistry》2008,47(12):3688-3696
The mitotic protein kinase Plk1 catalyzes events associated with centrosome maturation, kinetocore function, spindle formation, and cytokinesis and is a target for anticancer drug design. It is composed of a N-terminal kinase domain and a C-terminal polo-box domain (PBD). The PBD domain serves to localize the kinase on cognate phosphorylated substrates, and this binding relieves the inhibition of the kinase by the PBD. Similar to many protein kinases, Plk1 is activated by phosphorylation on a threonine residue, Thr210, in the activation segment. In this work, we describe expression in Escherichia coli cells and purification of full-length Plk1 in quantities suitable for structural studies and use this material for quantitative characterization of the activation events with the substrate translationally controlled tumour protein (TCTP). The presence of the PBD-binding phosphopeptide enhances phosphorylation by the activating Ste20-like kinase (Slk). Native Plk1 exhibits a basal catalytic efficiency k cat/ K(M) of 9.9 x 10 (-5) s (-1) microM (-1). Association with a polo-box-binding phosphopeptide increased the catalytic efficiency by 11x largely through an increase in k(cat) with no change in K(M). Phosphorylation by Slk increases catalytic efficiency by 202x with a 2.3-fold reduction in K(M) and 88-fold increase in k(cat). Phosphorylation and the presence of the PBD-binding phosphopeptide result in an increase in catalytic efficiency of 1515x with a 2.3-fold decrease in K(M) and a 705-fold increase in k(cat) over the unmodified Plk1. Knowledge of kinase regulatory mechanisms and the structures of the Plk1 individual domains has allowed for a model to be proposed for these activatory events.  相似文献   

11.
Interaction of chromatin-associated Plk1 and Mcm7   总被引:3,自引:0,他引:3  
Plk1 is a multifunctional protein kinase involved in regulation of mitotic entry, chromosome segregation, centrosome maturation, and mitotic exit. Plk1 is a target of DNA damage checkpoints and aids resumption of the cell cycle during recovery from G2 arrest. The polo-box domain (PBD) of Plk1 interacts with phosphoproteins and localizes Plk1 to some mitotic structures. In a search for proteins that interact with the PBD of Plk1, we identified two of the minichromosome maintenance (MCM) proteins, Mcm2 and Mcm7. Co-immunoprecipitation and immunoblot analysis showed an interaction between full-length Plk1 and all other members of the MCM2-7 protein complex. Endogenous Plk1 co-immunoprecipitates with basal forms of Mcm7 as well as with slower migrating forms of Mcm7, induced in response to DNA damage. The strongest interaction between endogenous Plk1 and Mcm7 was detected in a soluble chromatin fraction. These findings suggest a new function for Plk1 in coordination of DNA replication and mitotic events.  相似文献   

12.
Kyung S. Lee  Seung Jun Kim 《Proteins》2015,83(7):1201-1208
Polo‐like kinases (Plks) are the key regulators of cell cycle progression, the members of which share a kinase domain and a polo‐box domain (PBD) that serves as a protein‐binding module. While Plk1 is a promising target for antitumor therapy, Plk2 is regarded as a tumor suppressor even though the two Plks commonly recognize the S‐pS/T‐P motif through their PBD. Herein, we report the crystal structure of the PBD of Plk2 at 2.7 Å. Despite the overall structural similarity with that of Plk1 reflecting their high sequence homology, the crystal structure also contains its own features including the highly ordered loop connecting two subdomains and the absence of 310‐helices in the N‐terminal region unlike the PBD of Plk1. Based on the three‐dimensional structure, we furthermore could model its interaction with two types of phosphopeptides, one of which was previously screened as the optimal peptide for the PBD of Plk2. Proteins 2015; 83:1201–1208. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
Polo-like kinases (Plks) are characterized by the presence of a specific domain, known as the polo box (PBD), involved in protein-protein interactions. Plk1 to Plk4 are involved in centrosome biology as well as the regulation of mitosis, cytokinesis, and cell cycle checkpoints in response to genotoxic stress. We have analyzed here the new member of the vertebrate family, Plk5, a protein that lacks the kinase domain in humans. Plk5 does not seem to have a role in cell cycle progression; in fact, it is downregulated in proliferating cells and accumulates in quiescent cells. This protein is mostly expressed in the brain of both mice and humans, and it modulates the formation of neuritic processes upon stimulation of the brain-derived neurotrophic factor (BDNF)/nerve growth factor (NGF)-Ras pathway in neurons. The human PLK5 gene is significantly silenced in astrocytoma and glioblastoma multiforme by promoter hypermethylation, suggesting a tumor suppressor function for this gene. Indeed, overexpression of Plk5 has potent apoptotic effects in these tumor cells. Thus, Plk5 seems to have evolved as a kinase-deficient PBD-containing protein with nervous system-specific functions and tumor suppressor activity in brain cancer.  相似文献   

14.
Mammalian polo-like kinase 1 (Plk1) plays a pivotal role during M-phase progression. Plk1 localizes to specific subcellular structures through the targeting activity of the C-terminal polo-box domain (PBD). Disruption of the PBD function results in improper bipolar spindle formation, chromosome missegregation, and cytokinesis defect that ultimately lead to the generation of aneuploidy. It has been shown that Plk1 recruits itself to centromeres by phosphorylating and binding to a centromere scaffold, PBIP1 (also called MLF1IP and CENP-U[50]) through its PBD. However, how PBIP1 itself is targeted to centromeres and what roles it plays in the regulation of Plk1-dependent mitotic events remain unknown. Here, we demonstrated that PBIP1 directly interacts with CENP-Q, and this interaction was mutually required not only for their stability but also for their centromere localization. Plk1 did not appear to interact with CENP-Q directly. However, Plk1 formed a ternary complex with PBIP1 and CENP-Q through a self-generated p-T78 motif on PBIP1. This complex formation was central for Plk1-dependent phosphorylation of PBIP1-bound CENP-Q and delocalization of the PBIP1-CENP-Q complex from mitotic centromeres. This study reveals a unique mechanism of how PBIP1 mediates Plk1-dependent phosphorylation event onto a third protein, and provides new insights into the mechanism of how Plk1 and its recruitment scaffold, PBIP1-CENP-Q complex, are localized to and delocalized from centromeres.  相似文献   

15.
16.
Polo-like kinase 1 (Plk1) is elementary for cell proliferation and its deregulation is involved in tumorigenesis. Plk1 has been established as one of the most attractive targets for molecular cancer therapy. In fact, multiple small molecule inhibitors targeting either the kinase domain or the Polo-box binding domain (PBD) of Plk1 have been identified and intensively investigated. Intriguingly, Plk1 depletion affects more cancer cells than normal cells. It is also reported that the cytotoxicity induced by Plk1 inhibition is elevated in cancer cells with defective p53. The data lead to the hypothesis that p53 might be a predictive marker for the response of Plk1 inhibition. In this study, we demonstrate that there is no obvious different cytotoxic response between cancer cells with and without functional p53, including the isogenic colon cancer cell lines HCT116p53(+/+) and HCT116p53(-/-), breast cancer cell line MCF7, lung cancer cell line A549 and cervical carcinoma cell line HeLa, after treatment with either siRNA against Plk1, the kinase domain inhibitors BI 2536 and BI 6727 or the PBD inhibitor Poloxin. We suggest that the p53 status is not a predictor for the response of Plk1 inhibition, at least not directly. Yet, the long-term outcomes of losing p53, such as genome instability, could be associated with the cytotoxicity of Plk1 inhibition. Further studies are required to investigate whether other circumstances of cancer cells, such as DNA replication/damage stress, mitotic stress, and metabolic stress, which make possibly the survival of cancer cells more dependent on Plk1 function, are responsible for the sensitivity of Plk1 inhibition.  相似文献   

17.
The serine/threonine kinase polo-like kinase 1 (Plk1) is critically involved in multiple mitotic processes and has been established as an adverse prognostic marker for tumor patients. Plk1 localizes to its substrates and its intracellular anchoring sites via its polo-box domain (PBD), which is unique to the family of polo-like kinases. Therefore, inhibition of the Plk1 PBD has been suggested as an approach to the inhibition of Plk1 that circumvents specificity problems associated with the inhibition of the conserved adenosine triphosphate (ATP) binding pocket. Here we report on the development of a high-throughput assay based on fluorescence polarization that allows the discovery of small-molecule inhibitors of the Plk1 PBD. The assay is based on binding of the Plk1 PBD to a phosphothreonine-containing peptide comprising its optimal binding motif with a Kd of 26 ± 2 nM. It is stable with regard to dimethyl sulfoxide (DMSO) and time, and it has a Z′ value of 0.73 ± 0.06 in a 384-well format.  相似文献   

18.
Polo-like kinases (Plks) perform crucial functions in cell-cycle progression and multiple stages of mitosis. Plks are characterized by a C-terminal noncatalytic region containing two tandem Polo boxes, termed the Polo-box domain (PBD), which has recently been implicated in phosphodependent substrate targeting. We show that the PBDs of human, Xenopus, and yeast Plks all recognize similar phosphoserine/threonine-containing motifs. The 1.9 A X-ray structure of a human Plk1 PBD-phosphopeptide complex shows that the Polo boxes each comprise beta6alpha structures that associate to form a 12-stranded beta sandwich domain. The phosphopeptide binds along a conserved, positively charged cleft located at the edge of the Polo-box interface. Mutations that specifically disrupt phosphodependent interactions abolish cell-cycle-dependent localization and provide compelling phenotypic evidence that PBD-phospholigand binding is necessary for proper mitotic progression. In addition, phosphopeptide binding to the PBD stimulates kinase activity in full-length Plk1, suggesting a conformational switching mechanism for Plk regulation and a dual functionality for the PBD.  相似文献   

19.
The serine/threonine kinases Plk1, Plk2, and Plk3 harbor a protein–protein interaction domain dubbed polo-box domain (PBD). Recently, the inhibition of the PBD of the cancer target Plk1 has been successfully explored as an alternative to the inhibition of the kinase by ATP-competitive ligands. However, because the PBDs of Plk1, Plk2, and Plk3 have very similar optimal binding motifs, absolute specificity for the PBD of Plk1 over the PBDs of Plk2 and Plk3 may also represent a big challenge for a small molecule. To aid in the activity profiling of Plk PBD inhibitors, and to identify selective small molecules that will reveal the cellular consequences of inhibiting the PBDs of Plk2 and Plk3, we have developed high-throughput assays based on fluorescence polarization against the PBDs of Plk2 and Plk3. The assays are stable with regard to time and 10% dimethyl sulfoxide and have Z′ values 0.7, making them well-suited for high-throughput screening. Moreover, our data provide insights into the binding preferences of the PBDs of Plk2 and Plk3.  相似文献   

20.
Members of polo-like kinases (collectively, Plks) have been identified in various eukaryotic organisms and play pivotal roles in cell proliferation. They are characterized by the presence of a distinct region of homology in the C-terminal noncatalytic domain, called polo-box domain (PBD). Among them, Plk1 and its functional homologs in other organisms have been best characterized because of its strong association with tumorigenesis. Plk1 is overexpressed in a wide spectrum of cancers in humans, and is thought to be an attractive anti-cancer drug target. Plk1 offers, within one molecule, two functionally different drug targets with distinct properties-the N-terminal catalytic domain and the C-terminal PBD essential for targeting the catalytic activity of Plk1 to specific subcellular locations. In this review, we focused on discussing the recent development of small-molecule and phosphopeptide inhibitors for their potency and specificity against Plk1. Our effort in understanding the binding mode of various inhibitors to Plk1 PBD are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号