首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
We recently demonstrated that STAT5 can induce a variety of biological functions in mouse IL-3-dependent Ba/F3 cells; STAT5-induced expression of pim-1, p21(WAF/Cip1), and suppressor of cytokine signaling-1/STAT-induced STAT inhibitor-1/Janus kinase binding protein is responsible for induction of proliferation, differentiation, and apoptosis, respectively. In the present study, using a constitutively active STAT5A (STAT5A1*6), we show that STAT5 induces macrophage differentiation of mouse leukemic M1 cells through a distinct mechanism, autocrine production of IL-6. The supernatant of STAT5A1*6-transduced cells contained sufficient concentrations of IL-6 to induce macrophage differentiation of parental M1 cells, and STAT3 was phosphorylated on their tyrosine residues in these cells. Treatment of the cells with anti-IL-6 blocking Abs profoundly inhibited the differentiation. We also found that the STAT5A1*6 transactivated the IL-6 promoter, which was mediated by the enhanced binding of NF-kappaB p65 (RelA) to the promoter region of IL-6. These findings indicate that STAT5A cooperates with Rel/NF-kappaB to induce production of IL-6, thereby inducing macrophage differentiation of M1 cells in an autocrine manner. In summary, we have shown a novel mechanism by which STAT5 induces its pleiotropic functions. Cytokines  相似文献   

2.
Interleukin-9 (IL-9) activates three distinct STAT proteins: STAT1, STAT3, and STAT5. This process depends on one tyrosine of the IL-9 receptor, which is necessary for proliferation, gene induction, and inhibition of apoptosis induced by glucocorticoids. By introduction of point mutations in amino acids surrounding this tyrosine, we obtained receptors that activated either STAT5 alone or both STAT1 and STAT3, thus providing us with the possibility to study the respective roles of these factors in the biological activities of IL-9. Both mutant receptors were able to prevent apoptosis, but only the mutant that activated STAT1 and STAT3 was able to support induction of granzyme A and L-selectin. In line with these results, constitutively activated STAT5 blocked glucocorticoid-induced apoptosis. In Ba/F3 cells, significant proliferation and pim-1 induction were observed with both STAT-restricted mutants, though proliferation was lower than with the wild-type receptor. These results suggest that survival and cell growth are redundantly controlled by multiple STAT factors, whereas differentiation gene induction is more specifically correlated with individual STAT activation by IL-9.  相似文献   

3.
4.
The cytokine-inducible SH2 protein-3 (CIS3/SOCS-3/SSI-3) has been shown to inhibit the JAK/STAT pathway and act as a negative regulator of fetal liver erythropoiesis. Here, we studied the molecular mechanisms by which CIS3 regulates the erythropoietin (EPO) receptor (EPOR) signaling in erythroid progenitors and Ba/F3 cells expressing the EPOR (BF-ER). CIS3 binds directly to the EPOR as well as JAK2 and inhibits EPO-dependent proliferation and STAT5 activation. We have identified the region containing Tyr(401) in the cytoplasmic domain of the EPOR as a direct binding site for CIS3. Deletion of the Tyr(401) region of the EPOR reduced the inhibitory effect of CIS3, suggesting that binding of CIS3 to the EPOR augmented the negative effect of CIS3. Both N- and C-terminal regions adjacent to the SH2 domain of CIS3 were necessary for binding to EPOR and JAK2. In the N-terminal region of CIS3, the amino acid Gly(45) was critical for binding to the EPOR but not to JAK2, while Leu(22) was critical for binding to JAK2. The mutation of G45A partially reduced ability of CIS3 to inhibit EPO-dependent proliferation and STAT5 activation, while L22D mutant CIS3 was completely unable to suppress EPOR signaling. Moreover, overexpression of STAT5, which also binds to Tyr(401), reduced the binding of CIS3 to the EPOR, and the inhibitory effect of CIS3 against EPO signaling, while it did not affect JAB/SOCS-1/SSI-1. These data demonstrate that binding of CIS3 to the EPOR augments the inhibitory effect of CIS3. CIS3 binding to both EPOR and JAK2 may explain a specific regulatory role of CIS3 in erythropoiesis.  相似文献   

5.
p21(Cip1/WAF1) inhibits cell-cycle progression by binding to G1 cyclin/CDK complexes and proliferating cell nuclear antigen (PCNA) through its N- and C-terminal domains, respectively. The cell-cycle inhibitory activity of p21(Cip1/WAF1) is correlated with its nuclear localization. Here, we report a novel cytoplasmic localization of p21(Cip1/WAF1) in peripheral blood monocytes (PBMs) and in U937 cells undergoing monocytic differentiation by in vitro treatment with vitamin D3 or ectopic expression of p21(Cip1/WAF1), and analyze the biological consequences of this cytoplasmic expression. U937 cells which exhibit nuclear p21(Cip1/WAF1) demonstrated G1 cell-cycle arrest and subsequently differentiated into monocytes. The latter event was associated with a cytoplasmic expression of nuclear p21(Cip1/WAF1), concomitantly with a resistance to various apoptogenic stimuli. Biochemical analysis showed that cytoplasmic p21(Cip1/WAF1) forms a complex with the apoptosis signal-regulating kinase 1 (ASK1) and inhibits stress-activated MAP kinase cascade. Expression of a deletion mutant of p21(Cip1/WAF1) lacking the nuclear localization signal (DeltaNLS-p21) did not induce cell cycle arrest nor monocytic differentiation, but led to an apoptosis-resistant phenotype, mediated by binding to and inhibition of the stress-activated ASK1 activity. Thus, cytoplasmic p21(Cip1/WAF1) itself acted as an inhibitor of apoptosis. Our findings highlight the different functional roles of p21(Cip1/WAF1), which are determined by its intracellular distribution and are dependent on the stage of differentiation.  相似文献   

6.
Previous experiments have shown that STAT-induced STAT inhibitor-1 (SSI-1; also named suppressors of cytokine signaling-1 (SOCS-1) or Janus kinase binding protein) is predominantly expressed in lymphoid organs and functions in vitro as a negative regulator of cytokine signaling. To determine the function of SOCS-1 in vivo, we generated SSI-1 transgenic mice using the lck proximal promoter that drives transgene expression in T cell lineage. In thymocytes expressing SSI-1 transgene, tyrosine phosphorylation of STATs in response to cytokines such as IFN-gamma, IL-6, and IL-7 was inhibited, suggesting that SSI-1 suppresses cytokine signaling in primary lymphocytes. In addition, lck-SSI-1 transgenic mice showed a reduction in the number of thymocytes as a result of the developmental blocking during triple-negative stage. They also exhibited a relative increase in the percentage of CD4+ T cells, a reduction in the number of gammadelta T cells, as well as the spontaneous activation and increased apoptosis of peripheral T cells. Thus, enforced expression of SSI-1 disturbs the development of thymocytes and the homeostasis of peripheral T cells. All these features of lck-SSI-1 transgenic mice strikingly resemble the phenotype of mice lacking common gamma-chain or Janus kinase-3, suggesting that transgene-derived SSI-1 inhibits the functions of common gamma-chain-using cytokines. Taken together, these results suggest that SSI-1 can also inhibit a wide variety of cytokines in vivo.  相似文献   

7.
8.
The majority of polycythemia vera (PV) patients harbor a unique somatic mutation (V617F) in the pseudokinase domain of JAK2, which leads to constitutive signaling. Here we show that the homologous mutations in JAK1 (V658F) and in Tyk2 (V678F) lead to constitutive activation of these kinases. Their expression induces autonomous growth of cytokine-dependent cells and constitutive activation of STAT5, STAT3, mitogen-activated protein kinase, and Akt signaling in Ba/F3 cells. The mutant JAKs exhibit constitutive signaling also when expressed in fibrosarcoma cells deficient in JAK proteins. Expression of the JAK2 V617F mutant renders Ba/F3 cells hypersensitive to insulin-like growth factor 1 (IGF1), which is a hallmark of PV erythroid progenitors. Upon selection of Ba/F3 cells for autonomous growth induced by the JAK2 V617F mutant, cells respond to IGF1 by activating STAT5, STAT3, Erk1/2, and Akt on top of the constitutive activation characteristic of autonomous cells. The synergic effect on proliferation and STAT activation appears specific to the JAK2 V617F mutant. Our results show that the homologous V617F mutation induces activation of JAK1 and Tyk2, suggesting a common mechanism of activation for the JAK1, JAK2, and Tyk2 mutants. JAK3 is not activated by the homologous mutation M592F, despite the presence of the conserved GVC preceding sequence. We suggest that mutations in the JAK1 and Tyk2 genes may be identified as initial molecular defects in human cancers and autoimmune diseases.  相似文献   

9.
JAK1 and JAK2 are tyrosine kinases involved in the regulation of cell proliferation, differentiation, and survival. These proteins may play a key role in mediating the effects of the cytokine IL-3 on hematopoietic cells. IL-3 induces tyrosine phosphorylation of both JAK1 and JAK2. However, it is not clear whether the activation of JAK1, JAK2, or both is sufficient to confer factor-independent growth in IL-3 dependent cells. To address this issue, fusion proteins CD16/CD7/JAK (CDJAK), comprised of a CD16 extracellular domain, a CD7 transmembrane domain, and a JAK cytoplasmic region (either a wild-type JAK or a dominant negative mutant of JAK) were constructed. We established several Ba/F3 derivatives that stably overexpress the conditionally active forms of either CDJAK1, CDJAK2, or both these fusion proteins. In this study, the autophosphorylation of CDJAK1 or CDJAK2 was induced by crosslinking with anti-CD16 antibody. We demonstrated that, like their wild-type counterparts, CDJAK1 and CDJAK2 were preassociated with the IL-3 receptor beta and alpha subunits, respectively. Furthermore, the simultaneous activation of both CDJAK1 and CDJAK2 fusion proteins, but not either one alone, led to the tyrosine phosphorylation of the IL-3 receptor beta subunit, the activation of downstream signaling molecules, including STAT5, Akt, and MAPK, and the conferring of factor-independent growth to IL-3-dependent Ba/F3 cells. Coexpression of dominant negative mutants CDJAK1KE or CDJAK2KE with wild type CDJAK2 or CDJAK1, respectively, inhibited these activation activities. These results suggest that JAK1 and JAK2 must work cooperatively and not independently and that their actions are dependent on having normal kinase activity to trigger downstream signals leading to IL-3 independent proliferation and survival of Ba/F3 cells.  相似文献   

10.
Cytokines exert biological functions by activating Janus tyrosine kinases (JAKs), and JAK inhibitors JAB (also referred to as SOCS1 and SSI1) and CIS3 (SOCS3) play an essential role in the negative regulation of cytokine signaling. We have found that transgenic (Tg) mice expressing a mutant JAB (F59D-JAB) exhibited a more potent STAT3 activation and a more severe colitis than did wild-type littermates after treatment with dextran sulfate sodium. We now find that there is a prolonged activation of JAKs and STATs in response to a number of cytokines in T cells from Tg mice with lck promoter-driven F59D-JAB. Overexpression of F59D-JAB also sustained activation of JAK2 in Ba/F3 cells. These data suggested that F59D-JAB up-regulated STAT activity by sustaining JAK activation. To elucidate molecular mechanisms related to F59D-JAB, we analyzed the effects of F59D-JAB on the JAK/STAT pathway using the 293 cell transient expression system. We found that the C-terminal SOCS-box played an essential role in augmenting cytokine signaling by F59D-JAB. The SOCS-box interacted with the Elongin BC complex, and this interaction stabilized JAB. F59D-JAB induced destabilization of wild-type JAB, whereas overexpression of Elongin BC canceled this effect. Levels of endogenous JAB and CIS3 in T cells from F59D-JAB Tg-mouse were lower than in wild-type mice. We propose that F59D-JAB destabilizes wild-type, endogenous JAB and CIS3 by chelating the Elongin BC complex, thereby sustaining JAK activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号