首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
The site-specific recombinase (FLP) encoded by the yeast plasmid 2 micron circle belongs to the integrase (of phage lambda) family of recombinases. The sparse homology within the members of this family contrasts with the invariance of three residues, His-396, Arg-399, and Tyr-433 (the numbers correspond to the family alignment positions), among them. We report here results on substrate recognition and catalysis by FLP proteins altered at these residues. Mutations of the conserved His and Tyr that aborted the reaction at specific steps of catalysis permitted genetic dissection of the possible biochemical steps of recombination. We provide indirect evidence that recombination by FLP proceeds through a Holliday junction intermediate.  相似文献   

2.
F Lu  G Churchward 《The EMBO journal》1994,13(7):1541-1548
Transposition of the conjugative transposon Tn916 requires the activity of a protein, called Int, which is related to members of the integrase family of site-specific recombinases. This family includes phage lambda integrase as well as the Cre, FLP and XerC/XerD recombinases. Different proteins, consisting of fragments of Tn916 Int protein fused to the C-terminal end of maltose binding protein (MBP) were purified from Escherichia coli. DNase I protection experiments showed that MBP-INT proteins containing the C-terminal end of Int bound to the ends of the transposon and adjacent plasmid DNA. MBP-INT proteins containing the N-terminal end of Int bound to sequences within the transposon close to each end. Competition binding experiments showed that the sites recognized by the C- and N-terminal regions of Int did not compete with each other for binding to MBP-INT. We suggest that Tn916 and related conjugative transposons are unique among members of the integrase family of site-specific recombination systems because the presence of two DNA binding domains in the Int protein might allow Int to bridge recombining sites, and this bridging seems to be the sole mechanism ensuring that only correctly aligned molecules undergo recombination.  相似文献   

3.
The replication terminus region of the Escherichia coli chromosome encodes a locus, dif, that is required for normal chromosome segregation at cell division. dif is a substrate for site-specific recombination catalysed by the related chromosomally encoded recombinases XerC and XerD. It has been proposed that this recombination converts chromosome multimers formed by homologous recombination back to monomers in order that they can be segregated prior to cell division. Strains mutant in dif, xerC or xerD share a characteristic phenotype, containing a variable fraction of filamentous cells with aberrantly positioned and sized nucleoids. We show that the only DNA sequences required for wild-type dif function in the terminus region of the chromosome are contained within 33 bp known to bind XerC and XerD and that putative active site residues of the Xer recombinases are required for normal chromosome segregation. We have also shown that recombination by the loxP/Cre system of bacteriophage P1 will suppress the phenotype of a dif deletion strain when loxP is inserted in the terminus region. Suppression of the dif deletion phenotype did not occur when either dif/Xer or loxP/Cre recombination acted at other positions in the chromosome close to oriC or within lacZ, indicating that site-specific recombination must occur within the replication terminus region in order to allow normal chromosome segregation.  相似文献   

4.
The site-specific DNA rearrangement process, called V(D)J recombination, creates much of the diversity of immune receptor molecules in the adaptive immune system. Central to this reaction is the organization of the protein-DNA complex containing the proteins RAG1 and RAG2 and their DNA targets. A long-term goal is to appreciate the three-dimensional relationships between the proteins and DNA that allow the assembly of the appropriate reaction intermediates, resulting in concerted cleavage and directed rejoining of the DNA ends. Previous cross-linking approaches have mapped RAG1 contacts on the DNA. RAG1 protein contacts the DNA at the conserved heptamer and nonamer sequences as well as at the coding DNA adjacent to the heptamer. Here we subject RAG1, covalently cross-linked to DNA substrates, to partial cyanogen bromide degradation or trypsin proteolysis in order to map contacts on the protein. We find that coding-sequence contacts occur near the C terminus of RAG1, while contacts made within the recombination signal sequence occur nearer the N terminus of the core region of RAG1. A deletion protein lacking the C-terminal DNA-contacting region is still capable of making the N-terminal contacts. This suggests that the two binding interactions may exist on two separate domains of the protein. A trypsin cleavage pattern of the native protein supports this conclusion. A two-domain model for RAG1 is evaluated with respect to the larger recombination complex.  相似文献   

5.
Mx8 is a generalized transducing phage that infects Myxococcus xanthus cells. This phage is lysogenized in M. xanthus cells by the integration of its DNA into the host chromosome through site-specific recombination. Here, we characterize the mechanism of Mx8 integration into the M. xanthus chromosome. The Mx8 attachment site, attP, the M. xanthus chromosome attachment site, attB, and two phage-host junctions, attL and attR, were cloned and sequenced. Sequence alignments of attP, attB, attL, and attR sites revealed a 29-bp segment that is absolutely conserved in all four sequences. The intP gene of Mx8 was found to encode a basic protein that has 533 amino acids and that carries two domains conserved in site-specific recombinases of the integrase family. Surprisingly, the attP site was located within the coding sequence of the intP gene. Hence, the integration of Mx8 into the M. xanthus chromosome results in the conversion of the intP gene to a new gene designated intR. As a result of this conversion, the 112-residue C-terminal sequence of the intP protein is replaced with a 13-residue sequence. A 3-base deletion within the C-terminal region had no effect on Mx8 integration into the chromosome, while a frameshift mutation with the addition of 1 base at the same site blocked integration activity. This result indicates that the C-terminal region is required for the enzymatic function of the intP product.  相似文献   

6.
The integrase family of site-specific recombinases (also called the tyrosine recombinases) mediate a wide range of biological outcomes by the sequential exchange of two pairs of DNA strands at defined phosphodiester positions.The reaction produces a recombinant arrangement of the DNA sequences flanking the cross-over region. The crystal structures of four integrase family members have revealed very similar three-dimensional protein folds that belie the large diversity in amino acid sequences among them. The active sites are similar in organization to those seen in structures of eukaryotic type IB topoisomerases, and conservation of catalytic mechanism is expected. The crystal structures, combined with previous biochemical knowledge, allow the refinement of models for recombination and the assignment of catalytic function to the active site residues. However, each system has its own peculiarities, and the exact sequence of events that allows the reaction to proceed from the first exchange reaction to the second is still unclear for at least some family members.  相似文献   

7.
DNA sequence analysis of the complete M6 protein gene revealed 19 hydrophobic amino acids at the C terminus which could act as a membrane anchor and an adjacent proline- and glycine-rich region likely to be located in the cell wall. To define this region within the cell wall and its role in attaching the molecule to the cell, we isolated the cell-associated fragment of the M protein. Assuming that the cell-associated region of the M protein would be embedded within the wall and thus protected from trypsin digestion, cells were digested with this enzyme, and the wall-associated M protein fragment was released by phage lysin digestion of the peptidoglycan. With antibody probes prepared to synthetic peptides of C-terminal sequences, a cell wall-associated M protein fragment (molecular weight, 16,000) was identified and purified. Amino acid sequence analysis placed the N terminus of the 16,000-molecular-weight fragment at residue 298 within the M sequence. Amino acid composition of this peptide was consistent with a C-terminal sequence lacking the membrane anchor. Antibody studies of nitrous acid-extracted whole bacteria suggested that, in addition to the peptidoglycan-associated region, a 65-residue helical segment of the C-terminal domain of the M protein is embedded within the carbohydrate moiety of the cell wall. Since no detectable amino sugars were associated with the wall-associated fragment, the C-terminal region of the M6 molecule is likely to be intercalated within the cross-linked peptidoglycan and not covalently linked to it. Because the C-terminal region of the M molecule is highly homologous to the C-terminal end of protein A from staphylococci and protein G from streptococci, it is likely that the mechanism of attachment of these proteins to the cell wall is conserved.  相似文献   

8.
9.
The sequence of phi Ch1 contains an open reading frame (int1) in the central part of its genome that belongs to the lambda integrase family of site-specific recombinases. Sequence similarities to known integrases include the highly conserved tetrad R-H-R-Y. The flanking sequences of int1 contain several direct repeats of 30 bp in length (IR-L and IR-R), which are orientated in an inverted direction. Here, we show that a recombination active region exists in the genome of phi Ch1: the number of those repeats, non-homologous regions within the repeat clusters IR-L and IR-R and the orientation of the int1 gene vary in a given virus population. Within this study, we identified circular intermediates, composed of the int1 gene and the inwards orientated repeat regions IR-L and IR-R, which could be involved in the recombination process itself. IR-L and IR-R are embedded within ORF34 and ORF36 respectively. As a consequence of the inversion within this region of phi Ch1, the C-terminal parts of the proteins encoded by ORF34 and 36 are exchanged. Both proteins, expressed in Escherichia coli, interact with specific antisera against whole virus particles, indicating that they could be parts of phi Ch1 virions. Expression of the protein(s) in Natrialba magadii could be detected 98 h after inoculation, which is similar to other structural proteins of phi Ch1. Taken together, the data show that the genome of phi Ch1 contains an invertible region that codes for a recombinase and structural proteins. Inversion of this segment results in a variation of these structural proteins.  相似文献   

10.
The Salmonella dublin virulence plasmid pSDL2 is a low-copy-number plasmid that is highly conserved in its host. Deletion of the 8-kb EcoRI C fragment downstream of the virulence region leads to plasmid instability and formation of multimers. We identified a multimer resolution system in the EcoRI C fragment composed of a trans-acting resolvase gene and a cis-acting resolution site. The resolvase gene, rsd, maps within a 2-kb EcoRV fragment and appears to be part of a multicistronic unit together with at least two other genes of unknown function. The derived protein, 28.7-kDa in size, is almost identical to the D protein of miniF. The C-terminal region was shown to have substantial similarity to the conserved C-terminal domains of the site-specific recombinases of the integrase family. The cis-acting resolution site, crs, is located upstream of rsd within a 628-bp SmaI-HpaI fragment. It contains eight direct incomplete 17-bp repeats followed by a segment rich in indirect repeats, the latter being homologous to the oriV1 sequence of miniF. crs contains the crossover site for specific recombination and mediates bidirectional promoter activity. A replicative function in analogy to that of oriV1 of F could not be demonstrated. The multimer resolution system was shown to stabilize pACYC184 and is dependent on the recA-mediated formation of multimeric plasmids. Screening different Salmonella serovars with a pSDL2-specific recombination assay revealed that only strains harboring a virulence plasmid encode for resolvase activity. Our results suggest that site-specific recombination contributes to the stable inheritance of pSDL2 and other Salmonella virulence plasmids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号