首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell suspension cultures of Ruta graveolens (rue) and Rosa sp. produce ethylene. Both cultures grow at a high rate in hormone-free media. The rose cells are undifferentiated while the Ruta cells differentiate and form shoots after extended culture in hormone-free medium. Addition of 2,4-dichlorophenoxyacetic acid stimulated ethylene production in Ruta cells but not in rose cells. Abscisic acid (ABA) inhibited growth and ethylene production in rose, but only ethylene production in Ruta cells. Addition of kinetin reversed the inhibition by abscisic acid in the rose cells but not in the Ruta cells. The results suggested a distinct physiological difference between the two cultures. The Ruta cells responded to the growth regulators in a manner similar to whole plants.  相似文献   

2.
In vitro cultures of Ruta graveolens L. respond with rapid accumulation of acridone epoxides, furoquinolines and furanocoumarins, when challenged with autoclaved homogenate of the yeast Rhodotorula rubra. A transient increase of several enzymes of the respective biosynthetic pathways was measured but we still look for the key regulatory enzymes. We investigated whether the branch point enzymes of the shikimic acid pathway anthranilate synthase (AS) and chorismate mutase (CM) possibly play such a role. The two enzymes compete for chorismate. AS forms anthranilate, the precursor amino acid of acridone and furoquinoline alkaloids. CM channels chorismate into phenylalanine, tyrosine and phenylpropanoid biosynthesis. Elicitation resulted in a transient increase of the activity of both enzymes. Relative induction rates were 2–4 fold for AS and about 1.5 fold for CM. Constitutive CM activity, however, is about 1000 fold higher than AS activity. As in other plants 2 isoforms of CM are expected to be present in R. graveolens. A differential determination of the activity of the isoforms via the tryptophan activation rate proved to be ambiguous. Some evidence for the specific induction of a plastidic form of CM was obtained by inhibition of translation. The time courses of CM induction show CM not to be a key enzyme in elicitor induction of furanocoumarin accumulation. In comparison to other enzyme activities induction of anthranilate synthase activity corresponds closest to inducible acridone epoxide accumulation indicating a key role in its regulation. Induction of AS and CM was inhibited by actinomycin D and chloramphenicol while cycloheximid inhibited AS induction only.Abbreviations ACT actinomycin D - AS anthranilate synthase - CAP chloramphenicol - CHX cycloheximid - 4-CL 4-coumarate CoA ligase - CM chorismate mutase - DTT dithiothreitol - NMT S-adenosyl-L-methionine:anthranilic acid N-methyltransferase - PAL phenylalanine ammonia lyase - XOMT S-adenosylmethionine: xanthotoxol-O-methyltransferase  相似文献   

3.
Most angiosperms encode a small family of 4-coumarate:CoA-ligases (4CLs) activating hydroxycinnamic acids for lignin and flavonoid pathways. The common rue, Ruta graveolens L., additionally produces coumarins by cyclization of the 4-coumaroyl moiety, possibly involving the CoA-ester, as well as acridone and furoquinoline alkaloids relying on (N-methyl)anthraniloyl-CoA as the starter substrate for polyketide synthase condensation. The accumulation of alkaloids and coumarins, but not flavonoids, was enhanced in Ruta graveolens suspension cultures upon the addition of fungal elicitor. Total RNA of elicitor-treated Ruta cells was used as template for RT-PCR amplification with degenerate oligonucleotide primers inferred from conserved motifs in AMP-binding proteins, and two full-size cDNAs were generated through RACE and identified as 4-coumarate:CoA-ligases, Rg4CL1 and Rg4CL2, by functional expression in yeast cells. The recombinant enzymes differed considerably in their preferential affinities to cinnamate (Rg4CL1) or ferulate (RgCL2) besides 4-coumarate, but did not activate hydroxybenzoic or (N-methyl)anthranilic acid. Most notably, the Rg4CL1 polypeptide included an N-terminal extension suggesting a chloroplast transit peptide. The genes were cloned and revealed four exons, separated by 1056, 94 and 54 bp introns for RgCL1, while Rg4CL2 was composed of five exons interupted by four introns from 113 to 350 bp, and the divergent heritage of these genes was substantiated by phylogenetic analysis. Both genes were expressed in shoot, leaf and flower tissues of adult Ruta plants with preference in shoot and flower, whereas negligible expression occurred in the root. However, Rg4CL1 was expressed much stronger in the flower, while Rg4CL2 was expressed mostly in the shoot. Furthermore, considerable transient induction of only Rg4CL1 was observed upon elicitation of Ruta cells, which seems to support a role of Rg4CL1 in coumarin biosynthesis. Alexander Endler and Stefan Martens contributed equally to the work.  相似文献   

4.
Anthranilate synthase (AS) is a key enzyme in the biosynthesis of various indole compounds including tryptophan. AS consists of two subunits, alpha and beta, and converts chorismate to anthranilate. Two or more AS alpha-subunit genes have been identified and characterized in several land plants. Although alpha subunits of AS induced by elicitation have been suggested to play significant roles in secondary metabolism, the biochemical and precise functional properties of individual AS isozymes have remained unclear. We have previously identified and characterized two AS alpha-subunit genes (OASA1 and OASA2) in rice (Oryza sativa ). To provide further insight into the enzymatic functions of AS isozymes in rice, we have now isolated rice cDNAs encoding the AS beta subunits OASB1 and OASB2 and reconstituted AS isozymes in vitro with the wheat germ cell-free system for protein expression. Both OASB subunits conferred glutamine-dependent AS activity on either OASA1 or OASA2, indicating the absence of a marked functional difference between the two beta subunits in terms of amidotransferase activity. Furthermore, both OASA subunits required assembly with a beta subunit to achieve maximal enzymatic activity even with NH(4)(+) as the amino donor. The V (max) and K (i) for tryptophan of the OASA1-OASB1 isozyme with glutamine as the amino donor, however, were 2.4 and 7.5 times, respectively, those of OASA2-OASB1, suggesting that AS isozymes containing OASA1 possess a higher activity and are less sensitive to feedback inhibition than those containing OASA2. Our biochemical characterization of reconstituted AS isozymes has thus revealed distinct functional properties of these isozymes in rice.  相似文献   

5.
Anthranilate synthase (AS) is a key enzyme in the biosynthesis of various indole compounds including tryptophan. AS consists of two subunits, and , and converts chorismate to anthranilate. Two or more AS -subunit genes have been identified and characterized in several land plants. Although subunits of AS induced by elicitation have been suggested to play significant roles in secondary metabolism, the biochemical and precise functional properties of individual AS isozymes have remained unclear. We have previously identified and characterized two AS -subunit genes (OASA1 and OASA2) in rice (Oryza sativa). To provide further insight into the enzymatic functions of AS isozymes in rice, we have now isolated rice cDNAs encoding the AS subunits OASB1 and OASB2 and reconstituted AS isozymes in vitro with the wheat germ cell-free system for protein expression. Both OASB subunits conferred glutamine-dependent AS activity on either OASA1 or OASA2, indicating the absence of a marked functional difference between the two subunits in terms of amidotransferase activity. Furthermore, both OASA subunits required assembly with a subunit to achieve maximal enzymatic activity even with NH 4 + as the amino donor. The V max and K i for tryptophan of the OASA1-OASB1 isozyme with glutamine as the amino donor, however, were 2.4 and 7.5 times, respectively, those of OASA2-OASB1, suggesting that AS isozymes containing OASA1 possess a higher activity and are less sensitive to feedback inhibition than those containing OASA2. Our biochemical characterization of reconstituted AS isozymes has thus revealed distinct functional properties of these isozymes in rice.  相似文献   

6.
TransgenicNicotiana tabacum L. Petit Havana SR1 F1-plants expressing tryptophan decarboxylase cDNA (tdc) fromCatharanthus roseus (L.) G. Don under the control of the CaMV 35S promoter and terminator exhibited tryptophan decarboxylase (TDC) enzyme activity and accumulated tryptamine. The plants with the highest TDC activity contained 19 pkat per mg of protein. The influence of transgenic expression oftdc on the activities of anthranilate synthase (AS) and chorismate mutase (CM) were examined in 10 transgenic tobacco plants. The specific activities of these two chorismate-utilizing enzymes were not significantly affected by expression oftdc, despite their important functions as branch point enzymes in the shikimate pathway. The results indicate that the normal route of tryptophan biosynthesis in plants is sufficient to supply a considerable amount of this essential amino acid for the biosynthesis of secondary metabolites. Despite their increased tryptamine content, the growth and development of the transgenic tobacco plants expressingtdc appeared normal.  相似文献   

7.
Tryptophan is an aromatic amino acid used for protein synthesis and cellular growth. Chromobacterium violaceum ATCC 12472 uses two tryptophan molecules to synthesize violacein, a secondary metabolite of pharmacological interest. The genome analysis of this bacterium revealed that the genes trpA-F and pabA-B encode the enzymes of the tryptophan pathway in which the first reaction is the conversion of chorismate to anthranilate by anthranilate synthase (AS), an enzyme complex. In the present study, the organization and structure of AS protein subunits from C. violaceum were analyzed using bioinformatics tools available on the Web. We showed by calculating molecular masses that AS in C. violaceum is composed of alpha (TrpE) and beta (PabA) subunits. This is in agreement with values determined experimentally. Catalytic and regulatory sites of the AS subunits were identified. The TrpE and PabA subunits contribute to the catalytic site while the TrpE subunit is involved in the allosteric site. Protein models for the TrpE and PabA subunits were built by restraint-based homology modeling using AS enzyme, chains A and B, from Salmonella typhimurium (PDB ID 1I1Q).  相似文献   

8.
J Bohlmann  T Lins  W Martin    U Eilert 《Plant physiology》1996,111(2):507-514
Anthranilate synthase (AS, EC 4.1.3.27) catalyzes the conversion of chorismate into anthranilate, the biosynthetic precursor of both tryptophan and numerous secondary metabolites, including inducible plant defense compounds. The higher plant Ruta graveolens produces tryptophan and elicitor-inducible, anthranilate-derived alkaloids by means of two differentially expressed nuclear genes for chloroplast-localized AS alpha subunits, AS alpha 1 and AS alpha 2. Mechanisms that partition chorismate between tryptophan and inducible alkaloids thus do not entail chloroplast/cytosol separation of AS isoenzymes and yet might involve differential feedback regulation of pathway-specific AS alpha subunits. The two AS alpha isoenzymes of R. graveolens were expressed as glutathione S-transferase fusion proteins in Escherichia coli deletion mutants defective in AS activity and were purified to homogeneity. Differential sensitivity of the transformed E. coli strains toward 5-methyltryptophan, a false-feedback inhibitor of AS, was demonstrated. Characterization of affinity-purified AS alpha isoenzymes revealed that the noninducible AS alpha 2 of R. graveolens is strongly feedback inhibited by 10 microns tryptophan. In contrast, the elicitor-inducible AS alpha 1 isoenzyme is only slightly affected even by tryptophan concentrations 10-fold higher than those observed in planta. These results are consistent with the hypothesis that chorismate flux into biosynthesis of tryptophan and defense-related alkaloid biosynthesis in R. graveolens is regulated at the site of AS alpha isoenzymes at both genetic and enzymatic levels.  相似文献   

9.
10.
Voltage-gated Ca2+ channels allow the influx of Ca2+ ions from the extracellular space upon membrane depolarization and thus serve as a transducer between membrane potential and cellular events initiated by Ca2+ transients. Most insects are predicted to possess three genes encoding Cavα, the main subunit of Ca2+ channels, and several genes encoding the two auxiliary subunits, Cavβ and Cavα2δ; however very few of these genes have been cloned so far. Here, we cloned three full-length cDNAs encoding the three Cavα subunits (AmelCav1a, AmelCav2a and AmelCav3a), a cDNA encoding a novel variant of the Cavβ subunit (AmelCavβc), and three full-length cDNAs encoding three Cavα2δ subunits (AmelCavα2δ1 to 3) of the honeybee Apis mellifera. We identified several alternative or mutually exclusive exons in the sequence of the AmelCav2 and AmelCav3 genes. Moreover, we detected a stretch of glutamine residues in the C-terminus of the AmelCav1 subunit that is reminiscent of the motif found in the human Cav2.1 subunit of patients with Spinocerebellar Ataxia type 6. All these subunits contain structural domains that have been identified as functionally important in their mammalian homologues. For the first time, we could express three insect Cavα subunits in Xenopus oocytes and we show that AmelCav1a, 2a and 3a form Ca2+ channels with distinctive properties. Notably, the co-expression of AmelCav1a or AmelCav2a with AmelCavβc and AmCavα2δ1 produces High Voltage-Activated Ca2+ channels. On the other hand, expression of AmelCav3a alone leads to Low Voltage-Activated Ca2+ channels.  相似文献   

11.
Plants being sessile integrate information from a variety of endogenous and external cues simultaneously to optimize growth and development. This necessitates the signaling networks in plants to be highly dynamic and flexible. One such network involves heterotrimeric G‐proteins comprised of Gα, Gβ, and Gγ subunits, which influence many aspects of growth, development, and stress response pathways. In plants such as Arabidopsis, a relatively simple repertoire of G‐proteins comprised of one canonical and three extra‐large Gα, one Gβ and three Gγ subunits exists. Because the Gβ and Gγ proteins form obligate dimers, the phenotypes of plants lacking the sole or all genes are similar, as expected. However, Gα proteins can exist either as monomers or in a complex with Gβγ, and the details of combinatorial genetic and physiological interactions of different Gα proteins with the sole Gβ remain unexplored. To evaluate such flexible, signal‐dependent interactions and their contribution toward eliciting a specific response, we have generated Arabidopsis mutants lacking specific combinations of and genes, performed extensive phenotypic analysis, and evaluated the results in the context of subunit usage and interaction specificity. Our data show that multiple mechanistic modes, and in some cases complex epistatic relationships, exist depending on the signal‐dependent interactions between the Gα and Gβ proteins. This suggests that, despite their limited numbers, the inherent flexibility of plant G‐protein networks provides for the adaptability needed to survive under continuously changing environments.  相似文献   

12.
Abstract: The identities of heterotrimeric G proteins that can interact with the μ-opioid receptor were investigated by α-azidoanilido[32P]GTP labeling of α subunits in the presence of opioid agonists in Chinese hamster ovary (CHO)-MORIVA3 cells, a CHO clone that stably expressed μ-opioid receptor cDNA (MOR-1). This clone expressed 1.01 × 106μ-opioid receptors per cell and had higher binding affinity and potency to inhibit adenylyl cyclase for the μ-opioid-selective ligands [d -Ala2,N-MePhe4,Gly-ol]-enkephalin and [N-MePhe3,d -Pro4]-morphiceptin, relative to the δ-selective opioid agonist [d -Pen2,d -Pen5]-enkephalin or the κ-selective opioid agonist U-50,488H. μ-Opioid ligands induced an increase in α-azidoanilido[32P]GTP photoaffinity labeling of four Gα subunits in this clone, three of which were identified as Gi3α, Gi2α, and Go2α. The same pattern of simultaneous interaction of the μ-opioid receptor with multiple Gα subunits was also observed in two other clones, one expressing about three times more and the other 10-fold fewer receptors as those expressed in CHO-MORIVA3 cells. The opioid-induced increase of labeling of these G proteins was agonist specific, concentration dependent, and blocked by naloxone and by pretreatment of these cells with pertussis toxin. A greater agonist-induced increase of α-azidoanilido[32P]GTP incorporation into Gi2α (160–280%) and Go2α (110–220%) than for an unknown Gα (G?α) (60%) or Gi3α (40%) was produced by three different μ-opioid ligands tested. In addition, slight differences were also found between the ability of various μ-opioid agonists to produce half-maximal labeling (ED50) of any given Gα subunit, with a rank order of Gi3α > Go2α > Gi2α = G?α. In any case, these results suggest that the activated μ-opioid receptor couples to four distinct G protein α subunits simultaneously.  相似文献   

13.
14.
The hypoxia‐inducible factors have recently been identified as critical regulators of angiogenic–osteogenic coupling. Mice overexpressing HIFα subunits in osteoblasts produce abundant VEGF and develop extremely dense, highly vascularized long bones. In this study, we investigated the individual contributions of Hif‐1α and Hif‐2α in angiogenesis and osteogenesis by individually disrupting each Hifα gene in osteoblasts using the Cre‐loxP method. Mice lacking Hif‐1α demonstrated markedly decreased trabecular bone volume, reduced bone formation rate, and altered cortical bone architecture. By contrast, mice lacking Hif‐2α had only a modest decrease in trabecular bone volume. Interestingly, long bone blood vessel development measured by angiography was decreased by a similar degree in both ΔHif‐1α and ΔHif‐2α mice suggesting a common role for these Hifα subunits in skeletal angiogenesis. In agreement with this idea, osteoblasts lacking either Hif‐1α or Hif‐2α had profound reductions in VEGF mRNA expression but only the loss of Hif‐1α impaired osteoblast proliferation. These findings indicate that expression of both Hif‐1α and Hif‐2α by osteoblasts is required for long bone development. We propose that both Hif‐1α and Hif‐2α function through cell non‐autonomous modes to promote vascularization of bone and that Hif‐1α also promotes bone formation by exerting direct actions on the osteoblast. J. Cell. Biochem. 109: 196–204, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
D,L-Ethionine was added in varying concentrations (0.1–1 mM) to two cell suspension cultures of Ruta graveolens. Growth, alkaloid formation and activities of some shikimate pathway-specific enzymes in these cultures were estimated. Also the effect of ethionine on shikimate pathwayspecific enzymes under in vitro conditions was followed. Growth is only slightly inhibited in supplemented cultures. Alkaloid formation is drastically reduced in a low-producing and to a lesser extent in the high producing cell line by ethionine. Activities of DAHP synthase, chorismate mutase, and anthranilate synthase in the presence of ethionine are in different Ruta strains to a varying degree affected.  相似文献   

16.
Isopropylmalate synthase (IPMS) is a key enzyme in the biosynthesis of the essential amino acid leucine, and thus primary metabolism. In Arabidopsis, the functionally similar enzyme, methythiolalkylmalate synthase (MAM), is an important enzyme in the elongation of methionine prior to glucosinolate (GSL) biosynthesis, as part of secondary metabolism. We describe the cloning of an IPMS gene from Brassica, BatIMS, and its functional characterisation by heterologous expression in E. coli and Arabidopsis. Over expression of BatIMS in Arabidopsis resulted in plants with an aberrant phenotype, reminiscent of mutants in GSL biosynthesis. Metabolite analyses showed that these plants had both perturbed amino acid metabolism and enhanced levels of GSLs. Microarray profiling showed that BatIMS over expression caused up regulation of the genes for methionine-derived GSL biosynthesis, and down regulation of genes involved in leucine catabolism, in addition to perturbed expression of genes involved in auxin and ethylene metabolism. The results illustrate the cross talk that can occur between primary and secondary metabolism within transgenic plants. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

17.
18.
Advances in molecular breeding technologies have enabled manipulation of the concentrations of specific plant components by modifying the genes that play a key role in their production. This has provided new opportunities to enhance the nutritional quality of major crops. However, given that metabolic pathways form a highly integrated network, any alteration in a given biosynthetic pathway is most likely to effect secondary and unpredicted changes in the metabolite profile of other pathways. Metabolomics technologies can contribute to the efficient detection of such unexpected effects caused by genetic modification. This has relevance not only from the perspective of safety evaluations of newly developed crops, but to basic science focused on uncovering hitherto unknown regulatory mechanisms associated with the biosynthesis and catabolism of primary and secondary metabolites in plants. In this review, recent advances in plant metabolic engineering for the overproduction of tryptophan (Trp), one of the essential amino acids, are described. In particular, the efficacy of a transgene OASA1D that encodes a mutant anthranilate synthase (AS) α subunit of rice in specifically elevating levels of Trp without marked secondary effects on the metabolite profile of rice is demonstrated. Related topics, such as regulation of Trp biosynthesis, possible interactions between the biosyntheses of Trp and other aromatic amino acids, and translocation of Trp in are discussed based on findings derived from metabolomic analyses of Trp-overproducing transgenic plants.  相似文献   

19.
Black cohosh (Actaea racemosa L., syn. Cimicifuga racemosa, Nutt., Ranunculaceae) is a popular herb used for relieving menopausal discomforts. A variety of secondary metabolites, including triterpenoids, phenolic dimers, and serotonin derivatives have been associated with its biological activity, but the genes and metabolic pathways as well as the tissue distribution of their production in this plant are unknown. A gene discovery effort was initiated in A. racemosa by partial sequencing of cDNA libraries constructed from young leaf, rhizome, and root tissues. In total, 2,066 expressed sequence tags (ESTs) were assembled into 1,590 unique genes (unigenes). Most of the unigenes were predicted to encode primary metabolism genes, but about 70 were identified as putative secondary metabolism genes. Several of these candidates were analyzed further and full-length cDNA and genomic sequences for a putative 2,3 oxidosqualene cyclase (CAS1) and two BAHD-type acyltransferases (ACT1 and HCT1) were obtained. Homology-based PCR screening for the central gene in plant serotonin biosynthesis, tryptophan decarboxylase (TDC), identified two TDC-related sequences in A. racemosa. CAS1, ACT1, and HCT1 were expressed in most plant tissues, whereas expression of TDC genes was detected only sporadically in immature flower heads and some very young leaf tissues. The cDNA libraries described and assorted genes identified provide initial insight into gene content and diversity in black cohosh, and provide tools and resources for detailed investigations of secondary metabolite genes and enzymes in this important medicinal plant.  相似文献   

20.
The technique for the refinement of pRi T-DNA-transformed root cultivation by the root fragment encapsulation in the gel coat, i.e., so-called “artificial seed” (AS) production, was studied. AS were produced from genetically transformed roots of Baikal skullcap (Scutellaria baicalensis Georgi) and common rue (Ruta graveolens L.). The effects of duration of AS storage at 4°C on their subsequent growth activity and a capability for resumption of actively growing root cultures were analyzed. Encapsulation of contaminated Baikal skullcap root culture with the addition of antibiotic and storage during 2–5 weeks at low above-zero temperature resulted in a complete elimination of infection, i.e., obtaining the healthy root culture. Growth activity and total flavone concentration were markedly increased in this culture, so that total productivity of this renewed root culture increased substantially. Using AS produced from the root fragments of common rue, it was shown that, after long-term storage at low above-zero temperature, they are capable of not only root growth resumption but also active shoot formation, which is of interest for plant micropropagation. Long-term retaining growth activity of AS produced from root cultures of valuable medicinal plants permits their usage as a reserve and also, in the case of necessity, for long-distance transport as compact axenic root inocula. The storage of viable root fragments within AS also helps to optimize intervals between numerous subculturings of root cultures required for the maintenance of IPPRAS collection in the active state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号