首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 328 毫秒
1.
乌兰布和沙区紫花苜蓿根系生长及吸水规律的研究   总被引:30,自引:0,他引:30       下载免费PDF全文
研究了不同水分处理下,乌兰布和沙区紫花苜蓿系生长发育规律及根系吸水速度,结果表明:不同水分处理的根系生长规律最基本一致的,在生长季风均呈增加的趋势;但适度干旱可促进根系的伸长生长。在当地土壤类型条件下,根系主要分布在0-30cm土层;根重密度在土壤剖面上的分布遵循对数规律,并随深度的增加呈降低趋势。运用一维土壤水分运动方程,计算得到了不同水分处理根系吸水速度在土壤剖面上的分布状况;根系吸水速率与土壤含水量和根密度密切相关。  相似文献   

2.
干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系   总被引:12,自引:0,他引:12  
李文娆  张岁岐  丁圣彦  山仑 《生态学报》2010,30(19):5140-5150
采用盆栽实验方法研究了紫花苜蓿(品种:陇东和阿尔冈金)根系形态、生物量、蒸腾耗水量等对持续干旱的反应及与水分利用效率(WUE)间的关系,以期揭示紫花苜蓿对干旱胁迫的适应机制。结果表明:干旱胁迫使得紫花苜蓿根系形态特征在年季间、茬次间和品种间发生了显著变化,主要表现为主根伸长生长受到抑制、主根直径变细、侧根和根系总长度伸长生长则被促进、根系表面积和直径≥1mm的侧根数目显著增加、根系生物量下降,这是紫花苜蓿对干旱逆境的适应策略,但这种适应性存在限度。另一方面,干旱胁迫条件下紫花苜蓿草产量和蒸腾耗水量也因生长年限、茬次和品种的不同而呈现不同程度的降低。紫花苜蓿根系形态性状(总根长、根系生物量与根冠比)与植株水分利用效率间具有显著的相关性,其中根重对水分效率的影响是第一位的。WUE在根系形态与冠层水分消耗的协同变化下得到有限提高。对干旱的耐性最终表现为第2年第1年、第1茬和第2茬第3茬、陇东阿尔冈金。  相似文献   

3.
采用剖面法对宽窄行栽植模式下三倍体毛白杨(triploid Populus tomentosa)的根系分布特征进行了研究;采用管式TDR系统对土壤剖面含水率变化动态进行了连续观测,并据此计算林木根系吸水速率,以探讨土壤含水率、根系分布和根系吸水分布之间的相关关系。研究结果表明:毛白杨的总平均根长密度在林带两侧和不同径向距离处非常接近(P>0.05);但在不同土层间变化很大(P<0.01),其中0-20和60-150 cm土层为根系主要分布区域,其根系所占比例共达86%;不同径阶间的根长密度差异显著(P<0.01),且其比例关系会随空间位置的改变而发生变化。不同栽植方位下,林带东侧毛白杨根系分布的浅层化程度高于西侧,且在径向240-280 cm内其0-0.5 mm的极细根显著多于西侧(P<0.05)。因此,宽窄行栽植模式下,深度和径阶是毛白杨根系分布的主要影响因子,而栽植方位会对其形态构型产生影响。毛白杨根系吸水模式受细根分布的影响,但会随土壤剖面水分有效性分布的变化而变化:当表土层水分有效性增加时,根系吸水主要集中在表土层;当表土层水分有效性降低时,深层土壤根系的吸水贡献率会逐渐增加;当土壤剖面水分条件异质性较高时,根系吸水主要集中在根系密度与水分有效性均较高的区域;当土壤剖面水分分布均匀且不存在水分胁迫时,根系吸水分布与细根分布最为一致。  相似文献   

4.
建立了根系吸水模型和根源ABA参与作物气孔调控过程相耦合的气孔导度模型,该模型在根源信号ABA的产生项中考虑了根系吸水影响函数和根系密度分布函数.利用该耦合模型模拟大田状况下根源ABA参与玉米气孔行为调控过程,结果表明,由于充分考虑了根区土壤水势和土壤中根长密度分布对根系吸水的影响,较好地反映了土壤不同层次根系吸水强度,更为确切地描述了当土壤水分亏缺时,根系合成ABA的量、各层根系蒸腾流中ABA浓度、木质部ABA浓度以及最终ABA参与对气孔行为的调控作用.  相似文献   

5.
灌溉对干旱沙区紫花苜蓿生物学特性的影响   总被引:21,自引:0,他引:21  
白文明 《生态学报》2002,22(8):1247-1253
研究了干旱沙区不同水分处理下紫花苜蓿的 (Medicago sativa L.)生物学特性。结果表明 ,不同水分处理对紫花苜蓿植株高度、根系伸长生长和地上生物量形成的影响是不同的。在生长季内 ,灌水量最少的喷灌处理 W3植株高度最低 ,灌水量较多的漫灌处理 W1和灌水量居中的喷灌处理 W2植株高度相对较高 ,表明较多的灌水有利于植株高度的生长 ;对于根系长度则相反 ,灌水量最少的喷灌处理 W3根系伸长生长较快 ,到结实后期根系长度达到最大值 1 0 7.60 cm,说明适当的干旱可以促进紫花苜蓿根系伸长生长 ;地上生物量则是灌水量居中的喷灌处理 W2最高 ,表明在干旱沙区这种特殊的环境条件下 ,采取 W2这种灌溉方式种植紫花苜蓿 ,既可以获得较高的地上生物量 ,又可以节约利用水分  相似文献   

6.
氯离子在土壤水分与作物生长关系研究中的指示作用   总被引:6,自引:0,他引:6  
以小麦为试材,采用盆栽试验和氯离子指示技术,研究了不同土壤水分条件下,小麦在苗期对氯离子的吸收与累积特性和同期土壤中氯离子迁移特征。结果表明:(1)氯离子在小麦体内的累积与土壤含水量的关系密切,小麦苗期根系中氯离子累积量决定于根系与氯离子的接触几率,在植物地上部分的分配依赖于蒸腾强度;(2)在土壤含水量较低条件下,氯离子在根部累积明显,向地上部分移动不强,而在高含水量(18%)情况下,向地上部移动累积较为明显,氯离子在植物体中累积与分配关系很好地指示了土壤水分条件与植物生长之间关系;(3)在生长发育期间,当土壤含水量低于18%时小麦根系以伸长主动觅水,满足蒸腾需要为主;高于18%时,土壤水分移动以补偿根际蒸腾为主,土壤水分强烈的液态迁移存在着明显的临界含水量,可以用土壤剖面上氯离子含量的变化过程确定小麦根系水分利用的有效土层深度,以便准确地计算水分生产效率。因此,氯离子作为指示元素,在研究旱地土壤水分条件、水分移动能力等与作物生长的关系方面具有一定的可行性。  相似文献   

7.
灌溉对干旱沙区紫花苜宿生物学特性的影响   总被引:3,自引:0,他引:3  
白文明 《生态学报》2002,22(8):1247-1253
研究了干旱沙区不同水分处理下紫花苜蓿的(Medicago sativaL.)生物学特性,结果表明,不同水分处理对紫花苜蓿植株高度,根系伸长生长和地上生物量形成的影响是不同的,在生长季内,灌水量最少的喷灌处理W3植株高度最低,灌水量较多的漫灌处理W1和灌水量居中的喷灌处理W2植株高度相对较高,表明较多的灌水有利于植株高度的生长;对于根系长度则相反,灌水量最少的喷灌处理W3根系伸长生长较快,到结实后期根系长度达到最大值107.60cm,说明适当的干旱可以促进紫花苜蓿根系伸长生长;地上生物量则是灌水量居中的喷灌处理W2最高,表明在干旱沙区这种特殊的环境处理下,采取W2这种灌溉方式种植紫花苜蓿,既可以获得较高的地上生物量,又可以节约利用水分。  相似文献   

8.
根源信号参与调控气孔行为的机制及其农业节水意义   总被引:12,自引:5,他引:7  
在土壤干旱情况下,根源信号一方面向植物地上部分的长距离传输,为地上部分提供了土壤水分获取能力的测度,另一方面调控气孔开度,抑制蒸腾作用并提高植物的水分利用效率.文中综述了根源信号参与调控植物水分利用的生理机制和理论模型,指出该模型与根系吸水模型、气孔导度模型耦合,能够更好地反映植物叶片对土壤干旱以及大气干旱的响应、评述了在根源信号参与调控植物水分关系的基础上发展的调亏灌溉(RDI)、部分根系干旱(PRD)和控制性交替灌溉(CAI)等有效灌溉手段,有助于合理配置根系层供水量,通过根土相互作用和信号物质的传输,降低蒸腾和提高水分利用效率、另外,根源信号在调控根系生长发育、延缓地上部分生长以调节根冠比例,优化资源分配以利于生殖生长等方面均有所为,为全面提高农田水分利用效率提供节水生理基础。  相似文献   

9.
土壤水分和氮磷营养对冬小麦根系生长及水分利用的调节   总被引:41,自引:4,他引:37  
梁银丽 《生态学报》1996,16(3):258-264
模拟试验研究结果表明:在土壤相对含水量为40% ̄70%范围内,水分亏缺严重,根水势和蒸腾蒸发量显著降低,根系生长严重受阻,根长变短,根干重降低,随着土壤水分趋于良好,根水势和蒸腾蒸发量显著增加,根干重在土壤相对含水量为55% ̄62%之间时最大,而土壤相对含水量在55%上下时根长达最长;土壤水分趋于轻度干旱有利根系下扎,土壤水分趋于良好利于根量增长。氮磷营养对小麦根系生长具有明显的调节作用。磷营养可  相似文献   

10.
根据1994~1995年在大型人工气候室内取得的试验资料,分析了大气CO2浓度倍增条件下,春小麦冠层温度、蒸发蒸腾和根层土壤剖面水分动态的变化状况。结果表明,大气CO2浓度增加1倍,春小麦冠层温度明显升高,且高水分条件升高的值比低水分条件下大0.7℃左右;蒸发蒸腾减少的幅度在不同土壤水分处理间也不相同,高水分处理的蒸发蒸腾量减少9.88%,低水分处理的减小8.50%,根层土壤含剖面水分消耗减小,高CO2浓度处理的根层土壤含水率高于低CO2浓度处理的,特别是在底部根系密度减小,其水分消耗明显减少。  相似文献   

11.
Influence of root density on the critical soil water potential   总被引:1,自引:1,他引:0  
Estimation of root water uptake in crops is important for making many other agricultural predictions. This estimation often involves two assumptions: (1) that a critical soil water potential exists which is constant for a given combination of soil and crop and which does not depend on root length density, and (2) that the local root water uptake at given soil water potential is proportional to root length density. Recent results of both mathematical modeling and computer tomography show that these assumptions may not be valid when the soil water potential is averaged over a volume of soil containing roots. We tested these assumptions for plants with distinctly different root systems. Root water uptake rates and the critical soil water potential values were determined in several adjacent soil layers for horse bean (Vicia faba) and oat (Avena sativa) grown in lysimeters, and for field-grown cotton (Gossypium L.), maize (Zea mays) and alfalfa (Medicago sativa L.) crops. Root water uptake was calculated from the water balance of each layer in lysimeters. Water uptake rate was proportional to root length density at high soil water potentials, for both horse bean and oat plants, but root water uptake did not depend on root density for horse bean at potentials lower than −25 kPa. We observed a linear dependency of a critical soil water potential on the logarithm of root length density for all plants studied. Soil texture modified the critical water potential values, but not the linearity of the relationship. B E Clothier Section editor  相似文献   

12.
为了阐明根区交替控制灌溉(CRDAI)条件下玉米根系吸水规律,通过田间试验,在沟灌垄植模式下采用根区交替控制灌溉研究玉米根区不同点位(沟位、坡位和垄位)的根长密度(RLD)及根系吸水动态。研究表明,根区土壤水分的干湿交替引起玉米RLD的空间动态变化,在垄位两侧不对称分布,并存在层间差异;土壤水分和RLD是根区交替控制灌溉下根系吸水速率的主要限制因素。在同一土层,根系吸水贡献率以垄位最大,沟位最低;玉米营养生长阶段,10—30 cm土层的根系吸水速率最大;玉米生殖生长阶段,20—70 cm为根系吸水速率最大的土层,根系吸水贡献率为43.21%—55.48%。研究阐明了交替控制灌溉下根系吸水与土壤水分、RLD间相互作用的动态规律,对控制灌溉下水分调控机理研究具有理论意义。  相似文献   

13.
Root effects on soil water and hydraulic properties   总被引:1,自引:0,他引:1  
Plants can affect soil moisture and the soil hydraulic properties both directly by root water uptake and indirectly by modifying the soil structure. Furthermore, water in plant roots is mostly neglected when studying soil hydraulic properties. In this contribution, we analyze effects of the moisture content inside roots as compared to bulk soil moisture contents and speculate on implications of non-capillary-bound root water for determination of soil moisture and calibration of soil hydraulic properties. In a field crop of maize (Zea mays) of 75 cm row spacing, we sampled the total soil volumes of 0.7 m × 0.4 m and 0.3 m deep plots at the time of tasseling. For each of the 84 soil cubes of 10 cm edge length, root mass and length as well as moisture content and soil bulk density were determined. Roots were separated in 3 size classes for which a mean root porosity of 0.82 was obtained from the relation between root dry mass density and root bulk density using pycnometers. The spatially distributed fractions of root water contents were compared with those of the water in capillary pores of the soil matrix. Water inside roots was mostly below 2–5% of total soil water content; however, locally near the plant rows it was up to 20%. The results suggest that soil moisture in roots should be separately considered. Upon drying, the relation between the soil and root water may change towards water remaining in roots. Relations depend especially on soil water retention properties, growth stages, and root distributions. Gravimetric soil water content measurement could be misleading and TDR probes providing an integrated signal are difficult to interpret. Root effects should be more intensively studied for improved field soil water balance calculations. Presented at the International Conference on Bioclimatology and Natural Hazards, Pol’ana nad Detvou, Slovakia, 17–20 September 2007.  相似文献   

14.
为了明确华北严重缺水区晚播冬小麦灌水对根系时空分布和土壤水分利用规律的影响,以冬小麦石麦15为材料,利用田间定位试验研究了不同灌水处理(春季不灌水W0;春季灌拔节水75mm,W1;春季灌起身水、孕穗水和灌浆水共225mm,W3)对根系干重密度(DRWD)、根长密度(RLD)、体积密度、分枝数等在0—200cm土层的垂直分布、动态变化及其对耗水和产量的影响,结果表明:随着春季灌水量的减少,开花后0—80cm土层的根干重密度、根长度密度、体积密度和分枝数密度均显著减少,80cm—200m土层的根干重密度、根长度密度、体积密度和分枝数密度却显著增加,并且显著增加冬小麦在灌浆期间对100cm以下深层土层水分的利用,总耗水量W1和W0分别比W3减少70.9mm、115.1mm,土壤耗水量分别比W3增加79.1mm、108.9mm,子粒产量W1和W0分别比W3减少653.3kg/hm2、1470kg/hm2,水分利用效率(WUE)则分别比W3提高0.09kg/m3、0.06kg/m3。晚播冬小麦春季灌1水(拔节水)可以促进根系深扎,增加深土层的根系分布量,提高对深层土壤贮水的吸收利用量,有利于实现节水与高产的统一。  相似文献   

15.
李文娆  李小利  张岁岐  山仑 《生态学报》2011,31(5):1323-1333
利用聚乙二醇(PEG-6000)模拟水分亏缺条件(胁迫水势-0.2MPa,胁迫48h),研究了变水条件下紫花苜蓿(品种:阿尔冈金和陇东)和高粱(品种:抗四)根系水力学导度(Lpr)、根系活力、根叶相对含水量、水分利用效率等参数的动态变化,以期进一步明确植物水分吸收及散失过程调控的生理生态学基础。结果表明:水分亏缺限制了紫花苜蓿和高粱根系吸水,表现在Lpr的下降和根系活力的降低;继而调控了其地上部反应,引起气孔导度、光合速率、叶片相对含水量和蒸腾速率等的下降,但限制性的提高了其水分利用效率,尤其在胁迫初期。恢复到正常供水条件后,Lpr、根系活性、气孔导度等水分利用参数逐渐部分或完全恢复到了胁迫前水平,但恢复程度存在种间和品种间差异,并且根系吸水能力的恢复对于是植株地上部生长状态的恢复至关重要,尤其是水分恢复初期。紫花苜蓿根系中检测到水通道蛋白(AQPs)的存在,水分亏缺对紫花苜蓿Lpr的影响认为主要是通过影响AQPs的活性实现的。比较紫花苜蓿和高粱水分吸收与利用状况在变水条件下的动态变化,认为紫花苜蓿幼苗对干旱逆境的适应能力相对弱于高粱,品种间陇东适应能力更强。  相似文献   

16.
Li  Yan  Wallach  Rony  Cohen  Yehezkel 《Plant and Soil》2002,243(2):131-142
A multiplexed TDR system and a heat-pulse system for stem sap flow measurements were used to determine the spatial and temporal pattern of root water uptake in field-grown corn. The TDR probes, 0.15 and 0.30 m in length, were buried vertically in the soil profile to a depth of 0.95 m below the soil surface and heat-pulse sensors were installed on the plant base. Nocturnal readings from TDR probes were used successfully to differentiate the two components of moisture change: root uptake and net drainage. The instantaneous rate of water extraction by the plant measured by the heat-pulse system agreed well with the integrated rate of root water uptake measured frequently (at half-hour or hourly intervals) by the TDR probes. This agreement enabled further exploration into the cause of the evolution of the spatial and temporal patterns of root water uptake during a drying cycle. The results indicated that right after irrigation in the well-watered soil profile, it is the spatial distribution of the roots that mainly determines the typical pattern of root extraction, in addition to the fact that the roots near the plant base are more effective than those farther away. The higher density and effectiveness of the roots near the plant base dry the soil rapidly so that soil hydraulic conductivity soon becomes a limiting factor for water uptake. Further analysis revealed that a decrease in root uptake occurs near the plant base under a given atmospheric demand when the relative bulk soil hydraulic conductivity decreases to 0.002K r. This suggests that low conductivity (high resistance) in the soil near the plant base is the initial cause for downward and lateral shifting of the root uptake pattern. Note that this critical value of hydraulic conductivity is not universal since it depends on the soil type and atmospheric water demand during the period under observation. Therefore, prior to the application of moisture content or suction head as measures of water availability or to control irrigation scheduling, it is suggested that these parameters be calibrated by the soil K() or K() curves, respectively, for the expected atmospheric water demand for the specific crop and growing period.  相似文献   

17.
Ostonen  Ivika  Lõhmus  Krista  Lasn  Rein 《Plant and Soil》1999,208(2):283-292
The present study is an attempt to investigate the pattern of morphological variability of the short roots of Norway spruce (Picea abies (L.) Karst.) growing in different soils. Five root parameters – diameter, length and dry weight of the root tip, root density (dry weight per water-saturated volume) and specific root area (absorbing area of dry weight unit) were studied with respect to 11 soil characteristics using CANOCO RDA analysis. The investigation was conducted in seven study areas in Estonia differing in site quality class and soil type. Ten root samples per study area were collected randomly from the forest floor and from the 20 cm soil surface layer. Eleven soil parameters were included in the study: humus content, specific soil surface area, field capacity, soil bulk density, pH (KCl and H2O dilution's), N and Ca concentrations, Ca/Al and C/N ratios, and the decomposition rate of fine roots (<2 mm dia.). Root morphological characteristics most strongly related to the measured soil characteristics in the different sites were specific root area, root density and diameter of the short roots, the means varying from 29 to 42 m2 kg−1, from 310 to 540 kg m−3 and from 0.26 to 0.32 mm, respectively; root density being most sensitive. The most favourable site and soil types resulting in fine roots with morphological characteristics for optimizing nutrient uptake (e.g. low short root density and high specific root area) were Umbric Luvisol (Oxalis), Dystric Gleysol (Oxalis) and Gleyic Luvisol (Hepatica). These soil types correspond to highly productive natural forest stands of Norway spruce in Estonia. All measured soil variables explained 28% of total variance of the root characteristics. The most important variables related to root morphology were the humus content, field capacity and specific soil surface area. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Rates of sap flow and root-water uptake by two 7-year old kiwifruit vines (Acinidia deliciosa) were studied in an orchard with the aim of determining the ability of the vines to alter their spatial pattern of root-water uptake following differential wetting of the root zone. Time-domain reflectometry (TDR) was used to monitor changes in the soil's volumetric water content, . The heat-pulse technique was used to monitor sap flow not only in the stem but also in several large roots to see how root flow responded with local changes in soil water availability. Prior to irrigation there was a broad correspondence between the pattern of water uptake and the distribution of root-length density. However, following irrigation, we observed a preferential uptake of water from the wetter parts of the soil and a corresponding decline in water uptake from the drier parts of the soil. Observations of root uptake by TDR following irrigation also revealed the inordinate activity of near-surface roots. The vine would preferentially draw upon near-surface water if it were available. Kiwifruit vines are able to shift rapidly their pattern of uptake, in a matter of days, away from drier parts of the root zone and begin to extract water preferentially from those regions where it is more freely available. Upon full wetting of the root zone, previously inactive roots in the dry soil of the root zone were quickly able to recover their activity. Indeed their activity following rewatering was found to be greater than it had been prior to the period of soil dryness. A rapid flush of new root growth is considered to be the mechanism that leads to this enhanced activity.  相似文献   

19.
A model for water uptake by plant roots   总被引:4,自引:0,他引:4  
We present a model for water uptake by plant roots from unsaturated soil. The model includes the simultaneous flow of water inside the root network and in the soil. It is constructed by considering first the water uptake by a single root, and then using the parameterized results thereby obtained to build a model for water uptake by the developing root network. We focus our model on annual plants, in particular the model will be applicable to commercial monocultures like maize, wheat, etc. The model is solved numerically, and the results are compared with approximate analytic solutions. The model predicts that as a result of water uptake by plant roots, dry and wet zones will develop in the soil. The wet zone is located near the surface of the soil and the depth of it is determined by a balance between rainfall and the rate of water uptake. The dry zone develops directly beneath the wet zone because the influence of the rainfall at the soil surface does not reach this region, due to the nonlinear nature of the water flow in the partially saturated soil. We develop approximate analytic expressions for the depth of the wet zone and discuss briefly its ecological significance for the plant. Using this model we also address the question of where water uptake sites are concentrated in the root system. The model indicates that the regions near the base of the root system (i.e. close to the ground surface) and near the root tips will take up more water than the middle region of the root system, again due to the highly nonlinear nature of water flow in the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号