首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
The territorial African weaver ant Oecophylla longinoda forages in a 3-dimensional system when attending honeydew secreted by coccid colonies. The orienting strategy allowing workers to reach a static food resource was studied in laboratory conditions. Contrary to other studies devoted to territoriality in O. longinoda, our experiments show that, when moving off the nest, territorial faecal marking by the major workers is not randomly placed all over the home-range area. The chemical trail leading from the nest to a given food site is reinforced by faecal materials both on the horizontal and the vertical planes. In addition to visual cues and chemical trails laid by the major workers (Holldobler & Wilson 1978), foragers use the territorial marking both to localize the food site and to come back to the nest. Thus, anal-drop deposition in O. longinoda also has a clear dual-purpose function: territorial and orientationai marking. The ecological value of such a discrete Tom Thumb's orienting strategy enables workers to quickly reach a food location even after more than 5 months of inactivity on this given site. The persistent marked trail also has an intercolonial effect. This could allow the keeping of exploitation of a definite food site by alien colonies of the same species by reducing time costs for new exploring phases or for learning new spatial cues when foraging on an unknown environment.  相似文献   

2.
Summary Caterpillars of Maculinea arion are obligate predators of the brood of Myrmica sabuleti ants. In the aboratory, caterpillars eat the largest available ant larvae, although eggs, small larvae and prepupae are also palatable. This is an efficient way to predate. It ensures that newly-adopted caterpillars consume the final part of the first cohort of ant brood in a nest, before this pupates in early autumn and becomes unavailable as prey. At the same time, the fixed number of larvae in the second cohort is left to grow larger before being killed in late autumn and spring. Caterpillars also improve their feeding efficiency by hibernating for longer than ants in spring, losing just 6% of their weight while the biomass of ant larvae increases by 27%. Final instar caterpillars acquire more than 99% of their ultimate biomass in Myrmica nests, growing from 1.3 mg to an estimated 173 mg. A close correlation was found between the weights of caterpillars throughout autumn and the number of large ant larvae they had eaten. This was used to calculate the number of larvae eaten in spring, allowing both for the loss of caterpillar weight during winter and the increase in the size of their prey in spring. It is estimated that 230 of the largest available larvae, and a minimum nest size of 354 M. sabuleti workers, is needed to support one butterfly. Few wild M. sabuleti nests are this large: on one site, it was estimated that 85% of nests were too small to produce a butterfly, and only 5% could support two or more. This prediction was confirmed by the mortalities of 376 caterpillars in 151 wild M. sabuleti nests there. Mortalities were particularly high in nests that adopted more than two caterpillars, apparently due to scramble competition and starvation in autumn. Survival was higher than predicted in wild nests that adopted one caterpillar. These caterpillars seldom exhaust their food before spring, when there is intense competition among Myrmica for nest sites. Ants often desert their nests in the absence of brood, leaving the caterpillar behind. Vacant nests are frequently repopulated by a neighbouring colony, carrying in a fresh supply of brood. Maculinea arion caterpillars have an exceptional ability to withstand starvation, and sometimes survive to parasitize more than one Myrmica colony. Despite these adaptations, predation is an inefficient way to exploit the resources of a Myrmica nest. By contrast, Maculinea rebeli feeds mainly at a lower trophic level, on the regurgitations of worker ants. Published data show that Myrmica nests can support 6 times more caterpillars of Maculinea rebeli than of M. arion in the laboratory. This is confirmed by field data.  相似文献   

3.
Caterpillars of the parasitic lycaenid butterfly are often adopted by host ants. It has been proposed that this adoption occurs because the caterpillars mimic the cuticular hydrocarbons of the host ant. This study aimed to examine whether caterpillars of the Japanese lycaenid butterfly Niphanda fusca induce adoption by mimicking their host ant Camponotus japonicus. Behavioral observations conducted in the laboratory showed that most second‐instar caterpillars were not adopted, whereas most third‐instar caterpillars were successfully adopted by host workers. A chemical comparison detected no characteristic differences in the cuticular hydrocarbon profiles between second‐ and third‐instar caterpillars. However, morphological features of the caterpillars differed between the second and third instars; third‐instar caterpillars developed exocrine glands (ant organs) such as tentacle organs and a dorsal nectary organ. These results suggest that multiple chemical signatures, not only cuticular hydrocarbons, may be important for invasion of the host ant nest.  相似文献   

4.
Slave-making ants exploit the worker force of host colonies permanently and have to make recurrent raids in order to replenish the slave’s stock. Some of these parasite species exploit different host species and few studies so far have been devoted to host species recognition mechanisms. Here, we tried to determine if opportunist slave-making ants using different host species rely on innate or experience-induced preferences to discriminate host from non-host species. We show that Myrmoxenus ravouxi slave-making workers are not only more aggressive toward heterocolonial host and potential host species workers when compared with non-host species workers, but also toward heterocolonial host workers than toward heterocolonial conspecifics. Moreover, M. ravouxi workers display more antennations and contacts toward the heterocolonial host species when compared with the non-host species. We also show that they do not discriminate between homocolonial and heterocolonial conspecifics. Together, our results suggest that this opportunistic slave-making ant species may have a complex social recognition template based on both innate and experience-based mechanisms.  相似文献   

5.
Many animals, including humans, organize their foraging activity along well-defined trails. Because trails are cleared of obstacles, they minimize energy expenditure and allow fast travel. In social insects such as ants, trails might also promote social contacts and allow the exchange of information between workers about the characteristics of the food. When the trail traffic is heavy, however, traffic congestion occurs and the benefits of increased social contacts for the colony can be offset by a decrease of the locomotory rate of individuals. Using a small laboratory colony of the leaf-cutting ant Atta colombica cutting a mix of leaves and Parafilm, we compared how foraging changed when the width of the bridge between the nest and their foraging area changed. We found that the rate of ants crossing a 5 cm wide bridge was more than twice as great as the rate crossing a 0.5 cm bridge, but the rate of foragers returning with loads was less than half as great. Thus, with the wide bridge, the ants had about six times lower efficiency (loads returned per forager crossing the bridge). We conclude that crowding actually increased foraging efficiency, possibly because of increased communication between laden foragers returning to the nest and out-going ants. Received 15 December 2006; revised 16 February 2007; accepted 19 February 2007.  相似文献   

6.
In many social insect species, colonies frequently emigrate to a new nest. This requires the coordination of many individuals, and it puts the queen at risks of being lost or predated. We experimentally studied colony emigration in the ant Aphaenogaster senilis, who emigrates frequently and obligatorily reproduces by colony fission. As in other species, colony emigration was characterised by a synchronised relocation of workers. Foragers found the new nest site and triggered the relocation of the “inside” workers, which built up following a sigmoid curve. Unlike in Temnothorax, where workers are transported to the new nest, most individuals relocated by walking. The brood was transported around the middle of colony relocation, mostly by “inside” workers because they represent most of the workforce. The queen walked to the new nest at the middle of colony relocation, when the flow of ants to the new nest was maximal. Overall, this temporal dynamic of colony emigration is similar to that observed in other species. However, we argue that species-specific traits, such as whether workers are transported to the new nest or relocate by themselves, may affect parts of the process of colony emigration.  相似文献   

7.
Abstract.
  • 1 Caterpillars of the myrmecophilous butterfly Maculinea rebeli showed strong evidence of contest competition when introduced at high densities to laboratory nests of Myrmica ants.
  • 2 This is attributed to the direct feeding of caterpillars by workers, which select a few individuals to nurture when food or ant numbers are limiting. It contrasts with published data for a congener, Maculinea arion, which has predacious larvae and experiences scramble competition in crowded ant nests.
  • 3 Worker ants from two Myrmica rubra colonies (I and II) were used to found the laboratory nests hosting Maculinea rebeli. Nests from each source reared a similar biomass of Maculinea, but whereas those containing M. rubra I workers reared eight to ten lightweight caterpillars each, cultures from colony II reared half as many caterpillars, each of about double the weight.
  • 4 Differences in nest capacity may be due to the different social structures of colonies I and II at the start of the experiment.
  相似文献   

8.
Caterpillars of the lycaenid butterfly Maculinea rebeli Hirschke (Lepidoptera: Lycaenidae) live for 11–23 months as social parasites in Myrmica (Hymenoptera: Formicidae) red ant nests, a trait that is believed to have evolved from mutualistic myrmecophilous ancestry. Although Maculinea rebeli caterpillars harm Myrmica larvae, they simultaneously produce copious secretions which the adult worker ants imbibe, perhaps representing a vestige of the ancestral mutualism. We report the results of laboratory experiments designed to test alternative hypotheses: (i) Maculinea rebeli caterpillars provide a beneficial source of sugar in return for being tended by Myrmicaworkers; (ii) Maculinea rebeli harms its host by stressing the workers by competing for available sugar. Comparisons were made of Myrmica worker fitness after 90–450 days under all possible combinations of three experimental treatments: ± M. rebeli caterpillars, ± sucrose and ± ant brood. Caterpillars always reduced the survival of both ant workers and their larvae, even when sugar was not provided, suggesting that M. rebeli is wholly parasitic on all stages in its host colony. The results also confirmed the importance of sucrose in the diet of Myrmica, and showed that M. rebeli caterpillars which eat ant brood to supplement their normal trophallactic feeding by workers develop more quickly - but have the same survival and pupal weights – as caterpillars that are fed solely by worker ants.  相似文献   

9.
Communication in ants is based to a great extent on chemical compounds. Recognition of intruders is primarily based on cuticular hydrocarbon (CHC) profile matching but is prone to being cheated. Eucharitid wasps are specific parasitoids of the brood of ants; the immature stages are either well integrated within the colony or are protected within the host cocoons, whereas adult wasps at emergence must leave their host nest to reproduce and need to circumvent the ant recognition system to escape unscathed. The behavioral interactions between eucharitid wasps and workers of their host, the Neotropical ant Ectatomma tuberculatum, are characterized. In experimental bioassays, newly emerged parasitoids were not violently aggressed. They remained still and were grabbed by ants upon contact and transported outside the nest; host workers were even observed struggling to reject them. Parasitoids were removed from the nest within five minutes, and most were unharmed, although two wasps (out of 30) were killed during the interaction with the ants. We analyzed the CHCs of the ant and its two parasitoids, Dilocantha lachaudii and Isomerala coronata, and found that although wasps shared all of their compounds with the ants, each wasp species had typical blends and hydrocarbon abundance was also species specific. Furthermore, the wasps had relatively few CHCs compared to E. tuberculatum (22–44% of the host components), and these were present in low amounts. Wasps, only partially mimicking the host CHC profile, were immediately recognized as alien and actively removed from the nest by the ants. Hexane-washed wasps were also transported to the refuse piles, but only after being thoroughly inspected and after most of the workers had initially ignored them. Being recognized as intruder may be to the parasitoids’ advantage, allowing them to quickly leave the natal nest, and therefore enhancing the fitness of these very short lived parasitoids. We suggest that eucharitids take advantage of the hygienic behavior of ants to quickly escape from their host nests.  相似文献   

10.
1. The size–distance relationship among honeydew‐collecting foragers of the red wood ant Formica rufa was investigated. Within the colony territory, the size (as measured by head width) and fresh weight of samples of foragers were determined for ants ascending and descending trees near, and farther from, the central nest mound. 2. The mean size of the ants was significantly higher at far trees than at near trees in six out of the seven colonies investigated, confirming the general presence of the size–distance relationship. 3. In three colonies, a load–distance relationship was also found. For a given head width, honeydew‐carrying ants descending far trees were significantly heavier than those descending near trees (i.e. they were carrying heavier loads from trees farther away from the central nest mound). 4. This is the first time that both load–distance and size–distance relationships have been reported in foraging workers from the same ant colony. 5. The combined effects of these characteristics suggest that colony foraging efficiency is enhanced by far trees being visited by the larger workers that then return with heavier loads of honeydew.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号