首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Cisplatin (cis-diamminedichloroplatinum(II] is widely used in the treatment of various human tumours. A large body of experimental evidence indicates that the reaction of cisplatin with DNA is responsible for the cytostatic action of this drug. Several platinum-DNA adducts have been identified and their effect on the conformation of DNA has been investigated. Structural studies of platinum-DNA adducts now permit a reasonably good explanation of the biophysical properties of platinated DNA. Antitumouractive platinum compounds induce in DNA, at low levels of binding, local conformational alterations which have the character of non-denaturing distortions. It is likely that these changes occur in DNA due to the formation of intrastrand cross-links between two adjacent purine residues. On the other hand, the modification of DNA by antitumour-inactive complexes results in the formation of more severe local denaturation changes. Conformational alterations induced in DNA by antitumour-active platinum compounds may be reparable with greater difficulty than those induced by the inactive complexes. Alternatively, non-denaturation change induced in DNA by antitumour platinum drugs could represent more significant steric hindrance against DNA replication as compared with inactive complexes.  相似文献   

2.
The mechanisms of cytotoxicity of the antitumour diaziridinylbenzoquinones, AZQ and BZQ. have been investigated. HPLC analysis has been used to study the products as well as the rate of decomposition of acid-assisted ring-opening in aqueous medium as a function of pH. Microconcentrators with a molecular weight cutoff of 30 kDa were utilised to study the covalent binding of both compounds to calf thymus DNA. Radical production of both compounds in K562 cell incubations was followed using ESR and their uptake into K562 cells was monitored using radiolabelled compounds. The results show that these two diaziridinylbenzoquinones. although very similar in structure, have diverse mechanisms of cytotoxicity. The implications of these findings are discussed in the light of antitumour action  相似文献   

3.
《Free radical research》2013,47(4-6):231-239
The mechanisms of cytotoxicity of the antitumour diaziridinylbenzoquinones, AZQ and BZQ. have been investigated. HPLC analysis has been used to study the products as well as the rate of decomposition of acid-assisted ring-opening in aqueous medium as a function of pH. Microconcentrators with a molecular weight cutoff of 30 kDa were utilised to study the covalent binding of both compounds to calf thymus DNA. Radical production of both compounds in K562 cell incubations was followed using ESR and their uptake into K562 cells was monitored using radiolabelled compounds. The results show that these two diaziridinylbenzoquinones. although very similar in structure, have diverse mechanisms of cytotoxicity. The implications of these findings are discussed in the light of antitumour action  相似文献   

4.
The interaction of DNA modified by the binding of various platinum compounds with an electrically charged mercury surface was studied by means of linear sweep voltammetry. It was found that DNA and its adducts with antitumour active cis-diammine-dichloroplatinum(II) (cis-DDP) on the one hand and antitumour inactive trans-diamminedichloroplatinum(II) (trans-DDP) and diethylenetriaminechloroplatinum(II) chloride (dien-Pt) on the other were unwound due to their adsorption on the negatively charged mercury surface polarized to the potentials of a narrow region around -1.2 V (vs. saturated calomel electrode). The modification of DNA by bifunctional platinum compounds (cis- and trans-DDP) resulted in a substantial lowering of the extent of this interfacial conformational rearrangement, the modification by trans-DDP being more effective. The modification of DNA by monofunctional dien-Pt influenced the unwinding of DNA on the mercury surface only negligibly. It has been concluded that in particular interstrand cross-links induced by platinum compounds in DNA are responsible for the effect of these drugs on the extent of the interfacial unwinding of DNA. This conclusion is in good agreement with the view that among the lesions induced in DNA by platinum compounds, the interstrand cross-links are of less significance from the point of view of the antitumour efficacy of these inorganic drugs.  相似文献   

5.
The intercalative binding of the acridine antitumour drug 4'-(9-acridinylamino) methane-sulphonate-m-anisidine, a known inhibitor of nucleic acid synthesis, to native calf thymus DNA has been studied using optical titration method. Amsacrine (AMSA) exhibits positive cooperativity in their equilibrium binding to DNA as indicated by the positive slope in the initial region of the binding isotherms (Scatchard plots) under conditions simulating physiological ionic strengths. m-AMSA binds with a higher degree of cooperativity than o-AMSA. Although this correlates with the effectiveness of the drugs as antitumour agents, the exact relationship between the observation of cooperative binding and pharmacological activity is yet to be determined.  相似文献   

6.
DNA topoisomerase I (Top1) is over-expressed in tumour cells and is an important target in cancer chemotherapy. It relaxes DNA torsional strain generated during DNA processing by introducing transient single-strand breaks and allowing the broken strand to rotate around the intermediate Top1-DNA covalent complex. This complex can be trapped by a group of anticancer agents interacting with the DNA bases and the enzyme at the cleavage site, preventing further topoisomerase activity. Here we have identified novel Top1 inhibitors as potential anticancer agents by using a combination of structure- and ligand-based molecular modelling methods. Pharmacophore models have been developed based on the molecular characteristics of derivatives of the alkaloid camptothecin (CPT), which represent potent antitumour agents and the main group of Top1 inhibitors. The models generated were used for in silico screening of the National Cancer Institute (NCI, USA) compound database, leading to the identification of a set of structurally diverse molecules. The strategy is validated by the observation that amongst these molecules are several known Top1 inhibitors and agents cytotoxic against human tumour cell lines. The potential of the untested hits to inhibit Top1 activity was further evaluated by docking into the binding site of a Top1-DNA complex, resulting in a selection of 10 compounds for biological testing. Limited by the compound availability, 7 compounds have been tested in vitro for their Top1 inhibitory activity, 5 of which display mild to moderate Top1 inhibition. A further compound, found by similarity search to the active compounds, also shows mild activity. Although the tested compounds display only low in vitro antitumour activity, our approach has been successful in the identification of structurally novel Top1 inhibitors worthy of further investigation as potential anticancer agents.  相似文献   

7.
Disaccharide anthracyclines analogues have been shown to exhibit different antitumour activity as compared with parents compounds doxorubicin and daunomycin. Here we report the crystal structure of the disaccharide analog MAR70 complexed with the DNA hexamer d(CGATCG). The structure has been solved at 1.54A resolution and is similar to previous crystallized anthracycline-DNA complexes with both sugar rings of the disaccharide chain lying in the DNA minor groove. Comparison with the structure of MEN10755 another disaccharide anthracycline co-crystallized with the same DNA hexamer suggests a correlation between the position of the amino sugar on the disaccharide chain and the conformation of this moiety when binding to DNA. This is discussed with respect to the influence on drug activity and on the possible interaction with other cellular targets.  相似文献   

8.
The mutagenicity of a series of derivatives of 9-anilinoacridine, including the clinical antitumour agent amsacrine, has been assessed using a bacterial frameshift tester strain (Salmonella typhimurium TA1537) and a yeast petite colony assay (Saccharomyces cerevisiae 5178B). The results have been compared with microbial mammalian cell cytotoxicity, DNA binding affinity and acridine base strength (pKa). Compounds containing strong electron donor substituents on the acridine ring, and which have a high acridine pKa, show minimal frameshift mutagenicity but are strong inducers of petite yeast mutants. Conversely, some compounds which have a high DNA binding constant but a significant proportion of uncharged form at neutral pH, show high frameshift mutagenicity but minimal induction of petite mutants. It is hypothesised that this inverse relationship arises from the presence of trans-membrane drug transport mechanisms which act to exclude some compounds, particularly strongly basic compounds from the cytoplasm and to concentrate them in mitochondria.  相似文献   

9.
Lactenediynes are compounds characterized by the fusion of a beta-lactam with a cyclodeca-3-ene-1,5-diyne. In this work the most promising members of this family have been activated by attaching a carbalkoxy or a carbamoyl group to the azetidinone nitrogen, and conjugated to various DNA-complexing moieties, either acting by intercalation or through groove binding. These conjugated artificial enediynes have been demonstrated to possess in vitro ability to produce single and double strand cleavage of plasmid DNA. As potency and capacity to induce double cut, they rank among the best simple enediyne analogues ever prepared. A thorough investigation was carried out in order to develop the best suited linkers for assembling these conjugates.  相似文献   

10.
The interaction of actinomycin D and three new 7-substituted analogs with calf thymus DNA has been studied by a number of physical techniques. The methods utilized in this investigation include visible absorption spectrometry and ultrafiltration methodology for the determination of equilibrium binding constants; viscometry; and circular dichroism. The studies show that the 7-substituted actinomycin D analogs retain the G . C base pair specific DNA binding demonstrated by actinomycin D. The mode of binding to native DNA, despite substitution at position 7, is practically unaltered. The retention of this binding specificity by these analogs seems to be unaffected by changes in the electon properties of the chromophore.  相似文献   

11.
The family of anticancer complexes that include the transition metal copper known as Casiopeínas® shows promising results. Two of these complexes are currently in clinical trials. The interaction of these compounds with DNA has been observed experimentally and several hypotheses regarding the mechanism of action have been developed, and these include the generation of reactive oxygen species, phosphate hydrolysis and/or base-pair intercalation. To advance in the understanding on how these ligands interact with DNA, we present a molecular dynamics study of 21 Casiopeínas with a DNA dodecamer using 10 μs of simulation time for each compound. All the complexes were manually inserted into the minor groove as the starting point of the simulations. The binding energy of each complex and the observed representative type of interaction between the ligand and the DNA is reported. With this extended sampling time, we found that four of the compounds spontaneously flipped open a base pair and moved inside the resulting cavity and four compounds formed stacking interactions with the terminal base pairs. The complexes that formed the intercalation pocket led to more stable interactions.  相似文献   

12.
Ascididemin and Meridine are two marine compounds with pyridoacridine skeletons known to exhibit interesting antitumour activities. These molecules have been reported to behave like DNA intercalators. In this study, dialysis competition assay and mass spectrometry experiments were used to determine the affinity of ascididemin and meridine for DNA structures among duplexes, triplexes, quadruplexes and single-strands. Our data confirm that ascididemin and meridine interact with DNA but also recognize triplex and quadruplex structures. These molecules exhibit a significant preference for quadruplexes over duplexes or single-strands. Meridine is a stronger quadruplex ligand and therefore a stronger telomerase inhibitor than ascididemin (IC50=11 and >80 muM, respectively in a standard TRAP assay).  相似文献   

13.
The RecQ family of DNA helicases has been shown to be important for the maintenance of genomic integrity. Mutations in human RecQ genes lead to genomic instability and cancer. Several RecQ family of helicases contain a putative zinc finger motif of the C4 type at the C terminus that has been identified in the crystalline structure of RecQ helicase from Escherichia coli. To better understand the role of this motif in helicase from E. coli, we constructed a series of single mutations altering the conserved cysteines as well as other highly conserved residues. All of the resulting mutant proteins exhibited a high level of susceptibility to degradation, making functional analysis impossible. In contrast, a double mutant protein in which both cysteine residues Cys397 and Cys400 in the zinc finger motif were replaced by asparagine residues was purified to homogeneity. Slight local conformational changes were detected, but the rest of the mutant protein has a well defined tertiary structure. Furthermore, the mutant enzyme displayed ATP binding affinity similar to the wild-type enzyme but was severely impaired in DNA binding and in subsequent ATPase and helicase activities. These results revealed that the zinc finger binding motif is involved in maintaining the integrity of the whole protein as well as DNA binding. We also showed that the zinc atom is not essential to enzymatic activity.  相似文献   

14.
Terbium (Tb3+) fluorescence was used to investigate local non-denaturation perturbations of double-helical DNA structure induced in this nucleic acid by various physical and chemical agents. It has been shown that the interaction of Tb3+ with DNA into which single-strand or double-strand breaks have been introduced by DNase I or by low doses of ionizing radiation does not influence the fluorescence of the lanthanide cation. On the other hand, interaction of terbium with DNA modified by the antitumour drug cis-diamminedichloroplatinum(II) at low levels of binding and by low doses of ultraviolet radiation (wavelength 254 nm) has been shown to result in substantial enhancement of the fluorescence of this cation. It has been proposed that the terbium fluorescent probe can also be exploited successfully for the purpose of analysing the guanine bases present in distorted double-stranded regions of DNA, in which only the vertical stacking of the base-pairs is altered.  相似文献   

15.
A new rapid compound screening approach for topoisomerase I binding activity is presented. DNA topoisomerase I is used as a target protein to capture binding compounds from a mixture of combinatorial compounds by bioaffinity ultrafiltration. Using high-performance liquid chromatography combined with electrospray ionization mass spectrometry, small-molecule active compounds were identified. We also have successfully applied this method to identifying compounds from cells grown in culture.  相似文献   

16.
17.
The frameshift mutagenicity of the DNA intercalating drug proflavine is known to be enhanced by photoirradiation of bacterial cultures. To determine whether this phenomenon was also present in acridine-derived antitumour drugs, cultures of Salmonella typhimurium were exposed to the antileukaemia agent amsacrine and the experimental agent N-[2-(dimethylamino)ethyl]acridine-4-carboxamide dihydrochloride (acridine carboxamide) in the presence or absence of visible light. A small increase in mutagenicity was observed with amsacrine but not with acridine carboxamide. A series of analogues of amsacrine were then tested, and a striking relationship was found between the minimum drug concentration for mutagenicity and DNA binding affinity. In each case, photoirradiation was associated with a small increase in mutagenicity. Each of the compounds showing the photo-enhancement effect was capable of reversible one-electron oxidation. It is suggested that this oxidation occurs in bacteria, and that the DNA binding constant of the resulting acridine radical species will increase because of the extra positive charge. This increased DNA binding would be sufficient to explain the photo-enhancement of mutagenicity of these drugs.  相似文献   

18.
PARP inhibitors for cancer therapy   总被引:1,自引:0,他引:1  
Poly(ADP-ribose) polymerase 1 (PARP-1) is a zinc-finger DNA-binding enzyme that is activated by binding to DNA breaks. Poly(ADP-ribosyl)ation of nuclear proteins by PARP-1 converts DNA damage into intracellular signals that activate either DNA repair by the base-excision pathway or cell death. A family of 18 PARPs has been identified, but only the most abundant, PARP-1 and PARP-2, which are both nuclear enzymes, are activated by DNA damage. PARP inhibitors of ever-increasing potency have been developed in the 40 years since the discovery of PARP-1, both as tools for the investigation of PARP-1 function and as potential modulators of DNA-repair-mediated resistance to cytotoxic therapy. Owing to the high level of homology between the catalytic domains of PARP-1 and PARP-2, the inhibitors probably affect both enzymes. Convincing biochemical evidence, which has been corroborated by genetic manipulation of PARP-1 activity, shows that PARP inhibition is associated with increased sensitivity to DNA-alkylating agents, topoisomerase I poisons and ionising radiation. Novel PARP inhibitors of sufficient potency and suitable pharmacokinetic properties to allow evaluation in animal models have been shown to enhance the antitumour activity of temozolomide (a DNA-methylating agent), topoisomerase poisons and ionising radiation; indeed, the combination with temozolomide resulted in complete tumour regression in two independent studies. The combination of a PARP inhibitor and temozolomide is currently undergoing clinical evaluation for the first time.  相似文献   

19.
By the methods of fast atom bombardment (FAB) mass spectrometry, thin-layer chromatography and ultraviolet absorption spectroscopy adducts have been studied which are formed by an antitumour alkylating drug thiotepa both in a model system, containing only deoxyguanosine (dGuo), and in DNA. Analysis of the model reaction mixture (dGuo + thiotepa) by FAB mass spectrometry permitted observation of adducts dGuo thiotepa, 2dGuo thiotepa, and also the products of their further modification in solution, which occurs by hydrolysis of the glycosidic bond and also by opening of the imidazole ring. In the case of DNA FAB mass spectrometry made it possible to characterize adducts of thiotepa with guanosine (Gua) and adenosine (Ade) without their preliminary purification. The site of alkylation of Gua in both dGuo and DNA is N7, and that of Ade in DNA is N3. The application of the results to the study of the molecular mechanism of the antitumour action of thiotepa is discussed.  相似文献   

20.
High-throughput fluorescent intercalator displacement (HT–FID) was adapted to the semi-automated screening of a commercial compound library containing 60,000 molecules resulting in the discovery of cytotoxic DNA-targeted agents. Although commercial libraries are routinely screened in drug discovery efforts, the DNA binding potential of the compounds they contain has largely been overlooked. HT–FID led to the rapid identification of a number of compounds for which DNA binding properties were validated through demonstration of concentration-dependent DNA binding and increased thermal melting of A/T- or G/C-rich DNA sequences. Selected compounds were assayed further for cell proliferation inhibition in glioblastoma cells. Seven distinct compounds emerged from this screening procedure that represent structures unknown previously to be capable of targeting DNA leading to cell death. These agents may represent structures worthy of further modification to optimally explore their potential as cytotoxic anti-cancer agents. In addition, the general screening strategy described may find broader impact toward the rapid discovery of DNA targeted agents with biological activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号