首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 250 毫秒
1.
In this field study, the energetic properties of tropical hibernation were investigated by measuring oxygen consumption and body temperature of the Malagasy primate Cheirogaleus medius in their natural hibernacula. These lemurs use tree holes with extremely varying insulation capacities as hibernacula. In poorly insulated tree holes, tree hole temperature and body temperature fluctuated strongly each day (between 12.8 and 34.4°C). The metabolic rate under these conditions also showed large daily fluctuations between about 29.0 ml O2/h and 97.9 ml O2/h in parallel with changes in body temperature. In well insulated tree holes in very large trees on the other hand, tree hole temperature and body temperature remained relatively constant at about 25°C. Lemurs hibernating in these tree holes showed a more constant metabolic rate at an intermediate level, but hibernation was interrupted by repeated arousals with peak metabolic rates up to 350 ml O2/h. The occurrence of these spontaneous arousals proved that the ability for thermoregulation persists during hibernation. Arousals were energetically costly, but much less so than in temperate and arctic hibernators. Despite the decisive influence of tree hole properties on the pattern of body temperature and metabolic rate during hibernation, the choice of the hibernaculum does not seem to be of energetic importance. The overall energetic savings by tropical hibernation amounted to about 70% as compared to the active season (31.5 vs. 114.3 kJ/d). Therefore, tropical hibernation in C. medius is an effective, well-regulated adaptive response to survive unfavourable seasons.  相似文献   

2.
Body temperature of five European hamsters exposed to semi-natural environmental conditions at 47° N in Southern Germany was recorded over a 1.5-year period using intraperitoneal temperature-sensitive radio transmitters. The animals showed pronounced seasonal changes in body weight and reproductive status. Euthermic body temperature changed significantly throughout the year reaching its maximum of 37.9±0.2°C in April and its minimum of 36.1±0.4°C in December. Between November and March the hamsters showed regular bouts of hibernation and a few bouts of shallow torpor. During hibernation body temperature correlated with ambient temperature. Monthly means of body temperature during hibernation were highest in November (7.9±0.8°C) and March (8.2±0.5°C) and lowest in January (4.4±0.7°C). Using periodogram analysis methods, a clear diurnal rhythm of euthermic body temperature could be detected between March and August, whereas no such rhythm could be found during fall and winter. During hibernation bouts, no circadian rhythmicity was evident for body temperature apart from body temperature following ambient temperature with a time lag of 3–5 h. On average, hibernation bouts lasted 104.2±23.8 h with body temperature falling to 6.0±1.7°C. When entering hibernation the animals cooled at a rate of -0.8±0.2°C·h-1; when arousing from hibernation they warmed at a rate of 9.9±2.4°C·h-1. Warming rates were significantly lower in November and December than in January and February, and correlated with ambient temperature (r=-0.46, P<0.01) and hibernating body temperature (r=-0.47, P<0.01). Entry into hibrnation occured mostly in the middle of the night (mean time of day 0148 hours ±3.4 h), while spontaneous arousals were widely scattered across day and night. For all animals regression analysis revealed free-running circadian rhythms for the timing of arousal. These results suggest that entry into hibernation is either induced by environmental effects or by a circadian clock with a period of 24 h, whereas arousal from hibernation is controlled by an endogenous rhythm with a period different from 24 h.Abbreviations bw body weight - CET central European time - T a ambient temperature - T b body temperature - TTL transistor-transistor logic  相似文献   

3.
Mammals and birds have evolved the ability to maintain a high and constant body temperature Tb over a wide range of ambient temperatures Ta using endogenous heat production. In many, especially small endotherms, cost for thermoregulatory heat production can exceed available energy; to overcome these energetic bottlenecks, they enter a state of torpor (a regulated reduction of Tb and metabolic rate). Since the occurrence of torpor in many species is a seasonal event and occurs at certain times of the day, we review whether circadian and circannual rhythms, important in the timing of biological events in active animals, also play an important role during torpor when Tb is reduced substantially and may even fall below 0°C. The two distinct patterns of torpor, hibernation (prolonged torpor) and daily torpor, differ substantially in their interaction with the circadian system. Daily torpor appears to be integrated into the normal circadian rhythm of activity and rest, although torpor is not restricted only to the normal rest phase of an animal. In contrast, hibernation can last for several days or even weeks, although torpor never spans the entire hibernation season, but is interrupted by periodic arousals and brief normothermic periods. Clearly, a day is no longer divided in activity and rest, and at first glance the role of the circadian system appears negligible. However, in several hibernators, arousals not only follow a regular pattern consistent with a circadian rhythm, but also are entrainable by external stimuli such as photoperiod and Ta. The extent of the interaction between the circadian and circannual system and hibernation varies among species. Biological rhythms of hibernators for which food availability appears to be predictable seasonally and that hibernate in deep and sealed burrows show little sensitivity to external stimuli during hibernation and hence little entrainability of arousal events. In contrast, opportunistic hibernators, which some times use arousals for foraging and hibernate in open and accessible hibernacula, are susceptible to external zeitgebers. In opportunistic hibernators, the circadian system plays a major role in maintaining synchrony between the normal day-night cycle and occasional foraging. Although the daily routine of activity and rest is abandoned during hibernation, the circadian system appears to remain functional, and there is little evidence it is significantly affected by low Tb. (Chronobiology International, 17(2), 103–128, 2000)  相似文献   

4.
Helge Walhovd 《Oecologia》1979,40(2):141-153
Summary Thermal properties of hibernacula and sequences of arousals have been studied in four adult hedgehogs for seven months starting in October. Departures and entries to the nesting chamber were continuously monitored together with ambient temperature and the temperature in the hibernacula.During the two first months of the experimental period nest departures were intermittently recorded, predominantly in the two females which also occasionally foraged. The longest periods spent continuously in the hibernaculum ranged from 129 to 178 days. The natural hibernation season for Danish hedgehogs was found to comprise the six months from October onwards when there is little shelter where hedgehogs normally roam.Ambient temperatures recorded were —11 to +13° C being subzero for half the total time measured. The nest temperatures generally were higher, and above 0° C during 78–99% of total time, most commonly ranging from 0° to 4° C and thus reflecting deep hibernation.Between December and May spontaneous increases in nest temperatures amounting to 7–26° C (average 18° C) and bringing these temperatures to 10–29.5° C were recorded in 58 cases. Fiftyfour arousals did not involve departure from the hibernaculum (partial arousals). In the remaining cases (full arousals) the preceding rewarming lasted 4 1/2–6 1/2 h and nest departures amounted to 10,2 and 5 min in one female hedgehog and 90 min in another.The hedgehogs showed 12–18 arousals, the mean duration of which was 34–44 h. The high energy expenditure associated with arousals however, was found to last on average 21 h during each arousal. It is hypothesized that the body temperature during arousals chiefly was below 35–37° C.The time between arousals was 3–15 days. Periods in hibernation averaged 7–8 days in the females and 9–10 days in the heavier males, being generally longest in January-February. Neither arousals nor re-entries into deep hibernation occurred at any particular time of the day. It is suggested that for undisturbed hedgehogs arousals are induced and controlled by endogenous factors. In conclusion it is stressed that future studies on hibernation should recognize the importance of individual variability in the response pattern and focus interest on the endogenous factors which govern this important process.  相似文献   

5.
Animals have to adapt to seasonal variations in food resources and temperature. Hibernation is one of the most efficient means used by animals to cope with harsh winter conditions, wherein survival is achieved through a significant decrease in energy expenditure. The hibernation period is constituted by a succession of torpor bouts (hypometabolism and decrease in body temperature) and periodic arousals (eumetabolism and euthermia). Some species feed during these periodic arousals, and thus show different metabolic adaptations to fat-storing species that fast throughout the hibernation period. Our study aims to define these metabolic adaptations, including hormone (insulin, glucagon, leptin, adiponectin, GLP-1, GiP) and metabolite (glucose, free fatty acids, triglycerides, urea) profiles together with body composition adjustments. Syrian hamsters were exposed to varied photoperiod and temperature conditions mimicking different phases of the hibernation cycle: a long photoperiod at 20 °C (LP20 group), a short photoperiod at 20 °C (SP20 group), and a short photoperiod at 8 °C (SP8). SP8 animals were sampled either at the beginning of a torpor bout (Torpor group) or at the beginning of a periodic arousal (Arousal group). We show that fat store mobilization in hamsters during torpor bouts is associated with decreased circulating levels of glucagon, insulin, leptin, and an increase in adiponectin. Refeeding during periodic arousals results in a decreased free fatty acid plasma concentration and an increase in glycemia and plasma incretin concentrations. Reduced incretin and increased adiponectin levels are therefore in accordance with the changes in nutrient availability and feeding behavior observed during the hibernation cycle of Syrian hamsters.  相似文献   

6.
Helge Walhovd 《Oecologia》1976,25(4):321-330
Summary A pair of common dormice discovered while torpid in their natural hibernaculum on December 5, was studied continously outdoors, exposed to natural fluctuations in temperature and rainfall. Temperature inside and outside the nest ball and motor activity were recorded. The first emergence from hibernaculum occurred on March 4, after which the dormice were daily active, chiefly during evening and night hours. Nest departures lasted on average 10.5 h (6.5–14 h) per day.During the 88 days while the animals remained in the hibernaculum ambient temperature ranged from -5° to 8.5° C. Nest temperature never fell below zero, being chiefly 1.0°C above ambient temperature during 68 of these days and thus reflecting deep hibernation in both animals. However, on 19 occasions nest temperature was raised steeply from average 5.6°C (2.0–8.0°C) to average 23.0°C (17.5–32.5°C). These increases of nest temperature, lasting roughly 4 h (3–8 h) are interpreted as partial arousals. The total duration of partial arousals was 76 h, i.e. 3.6% of the time during which the animals remained consistently in the nest.The interarousal time varied, being 16 days at the most and 12 h at the least. The frequency of arousals increased with rising maximum values of ambient temperature, and partial arousals never were recorded on days when temperature remained below 2°C. It is believed that partial arousals correspond to the periodic or spontaneous arousals previously recorded in laboratory experiments of some other hibernating mammals. However, the energetic expenditure seems to be smaller during periodic arousals because of their shorter duration and the fact that no departure from the hibernaculum occurs.Possible mechanisms governing partial arousals are discussed. As these events chiefly occurred during night they may partly be controlled by an inherent time sense.  相似文献   

7.
Mammals and birds have evolved the ability to maintain a high and constant body temperature Tb over a wide range of ambient temperatures Ta using endogenous heat production. In many, especially small endotherms, cost for thermoregulatory heat production can exceed available energy; to overcome these energetic bottlenecks, they enter a state of torpor (a regulated reduction of Tb and metabolic rate). Since the occurrence of torpor in many species is a seasonal event and occurs at certain times of the day, we review whether circadian and circannual rhythms, important in the timing of biological events in active animals, also play an important role during torpor when Tb is reduced substantially and may even fall below 0°C. The two distinct patterns of torpor, hibernation (prolonged torpor) and daily torpor, differ substantially in their interaction with the circadian system. Daily torpor appears to be integrated into the normal circadian rhythm of activity and rest, although torpor is not restricted only to the normal rest phase of an animal. In contrast, hibernation can last for several days or even weeks, although torpor never spans the entire hibernation season, but is interrupted by periodic arousals and brief normothermic periods. Clearly, a day is no longer divided in activity and rest, and at first glance the role of the circadian system appears negligible. However, in several hibernators, arousals not only follow a regular pattern consistent with a circadian rhythm, but also are entrainable by external stimuli such as photoperiod and Ta. The extent of the interaction between the circadian and circannual system and hibernation varies among species. Biological rhythms of hibernators for which food availability appears to be predictable seasonally and that hibernate in deep and sealed burrows show little sensitivity to external stimuli during hibernation and hence little entrainability of arousal events. In contrast, opportunistic hibernators, which some times use arousals for foraging and hibernate in open and accessible hibernacula, are susceptible to external zeitgebers. In opportunistic hibernators, the circadian system plays a major role in maintaining synchrony between the normal day-night cycle and occasional foraging. Although the daily routine of activity and rest is abandoned during hibernation, the circadian system appears to remain functional, and there is little evidence it is significantly affected by low Tb. (Chronobiology International, 17(2), 103-128, 2000)  相似文献   

8.
In order to cope with the seasonal variations in ambient temperature and food availability in the natural habitat, gray mouse lemurs (Microcebus murinus) exhibit adaptive energy-saving mechanisms similar to those in hibernating species with seasonal and daily heterothermia. To determine thermoregulatory responses, via telemetry we recorded body temperature and locomotor activity variations during the breeding season in three captive male mouse lemurs kept at ambient temperatures (Ta) ranging from 18° to 34°C. Rhythms in body temperature and locomotor activity were clearly exhibited regardless of ambient temperature. As a increased, mean body temperature increased from 36.5 ± 0.1°C to 37.6 ± 0.3°C, with significant change in the amplitude of the body temperature rhythm when a rose above 28°C. Effects of a were mostly due to changes in the fall in body temperature occurring daily at the beginning of the light phase when the subjects entered diurnal sleep. The daily decrease in body temperature was not modified by exposure to ambient temperatures from 18°C to 28°C whereas it disappeared under warmer condition. Changes in locomotor activity levels only delayed the occurrence of thermoregulatory modulation. These results strongly suggest that, during the breeding season, the thermoneutral zone of mouse lemurs is close to 28°C and that the diurnal fall in body temperature could be considered as an important adaptive energy-saving mechanism adjusted to ecological constraints.  相似文献   

9.
Body temperature (T b) of seven European hamsters maintained at constant ambient temperature (T a = 8 °C) and constant photoperiod (LD 8:16) was recorded throughout the hibernating season using intraperitoneal temperature-sensitive HF transmitters. The animals spent about 30% of the hibernation season in hypothermia and 70% in inter-bout normothermy. Three types of hypothermia, namely deep hibernation bouts (DHBs), short hibernation bouts (SHBs), and short and shallow hibernation bouts (SSHBs), were distinguished by differences in bout duration and minimal body temperature (T m). A gradual development of SSHBs from the diel minimum of T b during normothermy could be seen in individual hamsters, suggesting a stepwise decrease of the homeostatic setpoint of T b regulation during the early hibernation season. Entry into hibernation followed a 24-h rhythm occurring at preferred times of the day in all three types of hypothermia. DHBs and SHBs were initiated approximately 4 h before SSHBs, indicating a general difference in the physiological initiation of SSHBs on the one hand and DHBs and SHBs on the other. Arousals from SHBs and SSHBs also followed a 24-h rhythm, whereas spontaneous arousals from DHBs were widely scattered across day and night. Statistical analyses of bout length and the interval between arousals revealed evidence for a free-running circadian rhythm underlying the timing of arousals. The results clearly demonstrate that entries into hypothermia are linked to the light/dark-cycle. However, the role of the circadian system in the timing of arousals from DHBs remains unclear. Accepted: 11 December 1996  相似文献   

10.
Physiological variables of torpor are strongly temperature dependent in placental hibernators. This study investigated how changes in air temperature affect the duration of torpor bouts, metabolic rate, body temperature and weight loss of the marsupial hibernator Burramys parvus (50 g) in comparison to a control group held at a constant air temperature of 2°C. The duration of torpor bouts was longest (14.0±1.0 days) and metabolic rate was lowest (0.033±0.001 ml O2·g-1·h-1) at2°C. At higher air temperatures torpor bouts were significantly shorter and the metabolic rate was higher. When air temperature was reduced to 0°C, torpor bouts also shortened to 6.4±2.9 days, metabolic rate increased to about eight-fold the values at 2°C, and body temperature was maintained at the regulated minimum of 2.1±0.2°C. Because air temperature had such a strong effect on hibernation, and in particular energy expenditure, a change in climate would most likely increase winter mortality of this endangered species.Abbreviationst STP standard temperature and pressure - T a air temperature - T b body temperature - VO2 rate of oxygen consumption  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号