首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stimulus-induced release of endogenous ATP into the extracellular milieu has been shown to occur in a variety of cells, tissues, and organs. Extracellular ATP can propagate signals via P2 receptors that are essential for growth and survival of cells. Abundance of P2 receptors, their multiple isoforms, and their ubiquitous distribution indicate that they transmit vital signals. Pulmonary epithelium and endothelium are rich in both P2X and P2Y receptors. ATP release from lung tissue and cells occurs upon stimulation both in vivo and in vitro. Extracellular ATP can activate signaling cascades composed of protein kinases including extracellular signal-regulated kinase (ERK) and phosphatidylinositol-3-kinase (PI3K). Here we summarize progress related to release of endogenous ATP and nucleotide signaling in pulmonary tissues upon exposure to oxidant stress. Hypoxic, hyperoxic, and ozone exposures cause a rapid increase of extracellular ATP in primary pulmonary endothelial and epithelial cells. Extracellular ATP is critical for survival of these cells in high oxygen and ozone concentrations. The released ATP, upon binding to its specific receptors, triggers ERK and PI3K signaling and renders cells resistant to these stresses. Impairment of ATP release and transmission of such signals could limit cellular survival under oxidative stress. This may further contribute to disease pathogenesis or exacerbation.  相似文献   

2.
ATP激活鼻咽癌细胞氯电流并减小细胞容积   总被引:1,自引:0,他引:1  
He QF  Wang LW  Mao JW  Sun XR  Li P  Zhong P  Nie SH  Jacob T  Chen LX 《生理学报》2004,56(6):691-696
采用全细胞膜片钳技术和细胞容积测量技术,在低分化鼻咽癌细胞株CNE-2Z上观察ATP 诱导的Cl- 电流的特性及其对细胞容积的影响。细胞外微摩尔水平的ATP 以剂量依赖性的方式激活一个具有弱外向整流特性,没有时间依赖性失活的电流,此电流的反转电位 [(-0.05 ± 0.03) mV]接近Cl- 的平衡电位(-0.9 mV)。用葡萄糖酸置换细胞外液Cl- 后, ATP 激活的电流明显减小并且反转电位发生改变。氯通道抑制剂NPPB (200 μmol/L)可以抑制这一电流 [(81.03 ± 9.3)%] 。此电流亦可被嘌呤受体(P2Y) 拮抗剂反应蓝 2 抑制 [(67.39 ± 5.06)%]。50 μmol/L 的 ATP 使在等渗状态下的细胞容积缩小, 替代和耗竭细胞外、内的Cl- 后, ATP 的这一作用消失。这些结果提示细胞外微摩尔水平的 ATP 可通过兴奋 P2Y 受体激活氯通道而产生与细胞容积调节相关的Cl- 电流。  相似文献   

3.
The common air pollutant ozone causes acute toxicity to human airways. In primary and transformed epithelial cells from all levels of human or rat airways, ozone levels relevant to air pollution (50-200 ppb) increased extracellular [ATP] within 7-30 min. A human bronchial epithelial cell line (16HBE14o(-)) that forms electrically resistant polarized monolayers had up to 10-fold greater apical than basolateral surface extracellular [ATP] within 7 min of ozone exposure. Increased extracellular [ATP] appeared due to ATP secretion or release because (1) inhibition of ectonucleotidase (cell surface enzyme(s) which degrade ATP) by ozone did not occur until >120 min of ozone exposure and (2) brefeldin A, a secretory inhibitor, eliminated elevation of extracellular [ATP] without affecting intracellular ATP. Extracellular ATP protected against ozone toxicity in a P2Y receptor-dependent manner as (1) removal of ATP and adenosine by apyrase and adenosine deaminase, respectively, potentiated ozone toxicity, (2) extracellular supplementation with ATP, a poorly hydrolyzable ATP analog ATPgammaS, or UTP inhibited apoptotic and necrotic ozone-mediated cell death, and (3) ATP-mediated protection was eliminated by P2 and P2Y receptor inhibitors suramin and Cibacron blue (reactive blue 2), respectively. The decline in glucose uptake caused by prolonged ozone exposure was prevented by supplemental extracellular ATP, an effect blocked by suramin. Further, Akt and ERK phosphorylation resulted from exposure to supplemental extracellular ATP. Thus, extracellularly released ATP signals to prevent ozone-induced death and supplementation with ATP or its analogs can augment protection, at least in part via Akt and /or ERK signaling pathways and their metabolic effects.  相似文献   

4.
Xiao Z  Yang M  Lv Q  Wang W  Deng M  Liu X  He Q  Chen X  Chen M  Fang L  Xie X  Hu J 《Journal of cellular biochemistry》2011,112(9):2257-2265
Extracellular ATP mediates a wide range of physiological effects, including cell proliferation, differentiation, maturation, and migration. However, the effect of ATP on cell proliferation has been contradictory, and the mechanism is not fully understood. In the current study, we found that extracellular ATP significantly inhibited the proliferation of human umbilical vein endothelial cells (HUVECs) and human aortic endothelial cells (HAECs). Treatment with ATP did not induce cell apoptosis but instead induced cell cycle arrest in S phase. ATP induced the phosphorylation of ERK1/2, but the ERK inhibitors, U0126 and PD9809, did not regulate the inhibition of cell proliferation induced by ATP. However, ATP-induced inhibition of cell proliferation was blocked by suramin, a nonspecific antagonist of the P2Y receptors, and endothelial cells expressed P2Y11, a P2Y receptor that specifically binds ATP. Moreover, the down-regulation of P2Y11 by RNA interference not only reversed the inhibition of cell proliferation but also ameliorated cell cycle arrest in S phase. In addition, P2Y11 sensitized endothelial cells to cisplatin-induced cell death by down-regulation of the expression of Bcl-2. Taken together, these results suggest that extracellular ATP impairs cell proliferation by triggering signaling to induce cell cycle arrest and sensitizes cell to death via P2Y11 in endothelial cells.  相似文献   

5.
Aortic smooth muscle cell release of matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-2 (TIMP-2) has been implicated in aortic aneurysm pathogenesis, but proximal modulation of release is poorly understood. Extracellular nucleotides regulate vascular smooth muscle cell metabolism in response to physiochemical stresses, but nucleotide modulation of MMP and/or TIMP release has not been reported. We hypothesized that nucleotides modulate MMP-2 and TIMP-2 release from human aortic smooth muscle cells (HASMCs) via distinct purinergic receptors and signaling pathways. We exposed HASMCs to exogenous ATP and other nucleotides with and without interleukin-1beta (IL-1beta). HASMCs were pretreated in some experiments with apyrase, which degrades ATP, and inhibitors of ERK1/2, JNK, and p38 MAPK. MMP-2 and TIMP-2 released into supernatant were assessed using ELISA and Western blotting. ATP, adenosine, and UTP significantly stimulated MMP-2 release in the presence of IL-1beta (300 nM ATP: 181 +/- 22%, P = 0.003; 30 microm adenosine: 244 +/- 150%, P = 0.001; and 200 microm UTP: 153 +/- 40%, P = 0.015; vs. 100% constitutive). ATP also stimulated MMP-2 release in the absence of IL-1beta (100 microm ATP: 148 +/- 38% vs. 100% constitutive). Apyrase significantly reduced ATP-stimulated MMP-2 release (apyrase + 500 nM ATP: 59 +/- 3% vs. 124 +/- 7% with 500 nM ATP). Rank-order agonist potency for MMP-2 release was consistent with ATP activation of PAY and PAY receptors. ATP induced phosphorylation of intracellular JNK, and inhibition of the JNK pathway blocked ATP-stimulated MMP-2 release, indicating signaling via this pathway. Nucleotides are thus novel stimulants of MMP-2 release from HASMCs and may provide a mechanistic link between physiochemical stress in the aorta and aneurysms, especially in the context of inflammation.  相似文献   

6.
7.
8.
9.
Macrophages exposed to hyperoxia in the lung continue to survive for prolonged periods. We previously reported (Nyunoya, T., Powers, L. S., Yarovinsky, T. O., Butler, N. S., Monick, M. M., and Hunninghake, G. W. (2003) J. Biol. Chem. 278, 36099-36106) that hyperoxia induces cell cycle arrest and sustained extracellular signal-related kinase (ERK) activity in macrophages. In this study, we determined the mechanisms of hyperoxia-induced ERK activation and how ERK activity plays a pro-survival role in hyperoxia-exposed cells. Inhibition of ERK activity decreased survival of hyperoxia-exposed macrophages. This was due, at least in part, to down-regulation of the pro-apoptotic Bcl-2 family member, BimEL. In determining the mechanism of ERK activation by hyperoxia, we found that ERK activation was not associated with hyperoxia-induced activation of the upstream ERK kinase mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2. When we examined the ability of whole cell lysates from hyperoxia-exposed cells to dephosphorylate purified phosphorylated ERK, we found decreased ERK-directed phosphatase activity. Two particular ERK-directed phosphatases (protein phosphatase 2A and MAPK phosphatase-3) demonstrated decreased activity in hyperoxia-exposed cells. Moreover, whole cell lysates from normoxia-exposed cells depleted of PP2A or MAPK phosphatase-3 were also less able to dephosphorylate ERK. These data demonstrate that, in hyperoxia-exposed macrophages, sustained activation of ERK due to phosphatase down-regulation permits macrophage survival via effects on the balance between pro- and anti-apoptotic Bcl-2 family proteins.  相似文献   

10.
Extracellular ATP as a signaling molecule for epithelial cells   总被引:17,自引:0,他引:17  
The charge of this invited review is to present a convincing case for the fact that cells release their ATP for physiological reasons. Many of our "purinergic" colleagues as well as ourselves have experienced resistance to this concept, because it is teleologically counter-intuitive. This review serves to integrate the three main tenets of extracellular ATP signaling: ATP release from cells, ATP receptors on cells, and ATP receptor-driven signaling within cells to affect cell or tissue physiology. First principles will be discussed in the Introduction concerning extracellular ATP signaling. All possible cellular mechanisms of ATP release will then be presented. Use of nucleotide and nucleoside scavengers as well as broad-specificity purinergic receptor antagonists will be presented as a method of detecting endogenous ATP release affecting a biological endpoint. Innovative methods of detecting released ATP by adapting luciferase detection reagents or by using "biosensors" will be presented.Because our laboratory has been primarily interested in epithelial cell physiology and pathophysiology for several years, the role of extracellular ATP in regulation of epithelial cell function will be the focus of this review. For ATP release to be physiologically relevant, receptors for ATP are required at the cell surface. The families of P2Y G protein-coupled receptors and ATP-gated P2X receptor channels will be introduced. Particular attention will be paid to P2X receptor channels that mediate the fast actions of extracellular ATP signaling, much like neurotransmitter-gated channels versus metabotropic heptahelical neurotransmitter receptors that couple to G proteins. Finally, fascinating biological paradigms in which extracellular ATP signaling has been implicated will be highlighted. It is the goal of this review to convert and attract new scientists into the exploding field of extracellular nucleotide signaling and to convince the reader that extracellular ATP is indeed a signaling molecule.  相似文献   

11.
The hormone glucose-dependent insulinotropic polypeptide (GIP) is an important regulator of insulin secretion. GIP has been shown to increase adenylyl cyclase activity, elevate intracellular Ca(2+) levels, and stimulate a mitogen-activated protein kinase pathway in the pancreatic beta-cell. In the current study we demonstrate a role for arachidonic acid in GIP-mediated signal transduction. Static incubations revealed that both GIP (100 nm) and ATP (5 microm) significantly increased [(3)H]arachidonic acid ([(3)H]AA) efflux from transfected Chinese hamster ovary K1 cells expressing the GIP receptor (basal, 128 +/- 11 cpm/well; GIP, 212 +/- 32 cpm/well; ATP, 263 +/- 35 cpm/well; n = 4; p < 0.05). In addition, GIP receptors were shown for the first time to be capable of functionally coupling to AA production through Gbetagamma dimers in Chinese hamster ovary K1 cells. In a beta-cell model (betaTC-3), GIP was found to elicit [(3)H]AA release, independent of glucose, in a concentration-dependent manner (EC(50) value of 1.4 +/- 0.62 nm; n = 3). Although GIP did not potentiate insulin release under extracellular Ca(2+)-free conditions, it was still capable of elevating intracellular cAMP and stimulating [(3)H]AA release. Our data suggest that cAMP is the proximal signaling intermediate responsible for GIP-stimulated AA release. Finally, stimulation of GIP-mediated AA production was shown to be mediated via a Ca(2+)-independent phospholipase A(2). Arachidonic acid is therefore a new component of GIP-mediated signal transduction in the beta-cell.  相似文献   

12.
Extracellular ATP is a pro-inflammatory mediator involved in the release of prostaglandin from articular chondrocytes, but little is known about its effects on intracellular signaling. ATP triggered the rapid release of prostaglandin E(2) (PGE(2)) by acting on P2Y(2) receptors in rabbit articular chondrocytes. We have explored the signaling events involved in this synthesis. ATP significantly increased arachidonic acid production, which involved the activation of the 85-kDa cytosolic phospholipase A(2) (cPLA(2)) but not a secreted form of PLA(2), as demonstrated by various PLA(2) inhibitors and translocation experiments. We also showed that ATP induced the phosphorylation of p38 and ERK1/2 mitogen-activated-protein kinases (MAPKs). Both PD98059, an inhibitor of the ERK pathway, and SB203580, an inhibitor of p38 MAPK, completely inhibited the ATP-induced release of PGE(2). Finally, dominant-negative plasmids encoding p38 and ERK transfected alone into the cells impaired the ATP-induced release of PGE(2) to about the same extent as both plasmids transfected together. These results suggest that PGE(2) production induced by ATP requires the activation of both ERK1/2 and p38 MAPKs. Thus, ATP acts via P2Y(2)-purine receptors to recruit cPLA(2) by activating both ERK1/2 and p38 MAPKs and stimulates the release of PGE(2) from articular chondrocytes.  相似文献   

13.
Extracellular ATP and other nucleotides act through specific cell surface receptors and regulate a wide variety of cellular responses in many cell types and tissues. In this study, we demonstrate that murine mast cells express several P2Y and P2X receptor subtypes including P2X(7), and describe functional responses of these cells to extracellular ATP. Stimulation of bone marrow-derived mast cells (BMMC), as well as MC/9 and P815 mast cell lines with millimolar concentrations of ATP, resulted in Ca(2+) influx across the cellular membrane and cell permeabilization. Moreover, brief exposures to ATP were sufficient to induce apoptosis in BMMCs, MC/9, and P815 cells which involved activation of caspase-3 and -8. However, in the time period between commitment to apoptosis and actual cell death, ATP triggered rapid but transient phosphorylation of multiple signaling molecules in BMMCs and MC/9 cells, including ERK, Jak2, and STAT6. In addition, ATP stimulation enhanced the expression of several proinflammatory cytokines, such as IL-4, IL-6, IL-13, and TNF-alpha. The effects of ATP were mimicked by submillimolar concentrations of 3-O-(4'-benzoyl)-benzoyl-benzoyl-ATP, and were inhibited by pretreatment of mast cells with a selective blocker of human and mouse P2X(7) receptor, 1[N,O-bis(5-isoquinolinesulphonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine, as well as oxidized ATP. The nucleotide selectivity and pharmacological profile data support the role for P2X(7) receptor as the mediator of the ATP-induced responses. Given the importance of mast cells in diverse pathological conditions, the ability of extracellular ATP to induce the P2X(7)-mediated apoptosis in these cells may facilitate the development of new strategies to modulate mast cell activities.  相似文献   

14.
15.
Extracellular ATP enhances the mitogenic activity of fibroblast growth factor-2 (FGF2) in astrocytes, but the molecular mechanism underlying this synergistic interaction is not known. To determine whether the potentiating effect of extracellular ATP involves cell cycle control mechanisms, we have measured the expression of cyclins that are induced in different phases of the cell cycle in primary cultures of rat cortical astrocytes. We found that ATP potentiated the ability of FGF2 to stimulate expression of cyclin D1, a regulator of cell cycle entry, as well as cyclin A, a regulator of DNA replication. Because FGF2 and P2 purinergic receptors are coupled to extracellular signal regulated protein kinase (ERK), a key member of a signaling cascade that regulates proliferation, we also investigated the role of ERK in regulating cyclin expression induced by FGF2 and ATP. We found that the potentiating effect of ATP on cyclin expression was significantly reduced by U0126, an inhibitor of MEK, the upstream activator of ERK. P2 receptor agonist studies revealed that UTP enhanced FGF2-induced cyclin expression and mitogenesis whereas 2-methylthioADP was ineffective. By contrast, 2′,3′-O-(4-benzoyl)-benzoyl-ATP markedly inhibited FGF2-induced mitogenesis. Consistent with opposing effects of P2Y and P2X receptors on mitogenesis, UTP stimulated a transient activation of ERK whereas BzATP stimulated a more sustained ERK signal. These findings suggest that signaling by P2Y receptors, most likely of the purine/pyrimidine subtype, enhance the ability of FGF2 to stimulate entry into a new cell cycle, as well as DNA replication, by an ERK-dependent mechanism, whereas signaling by P2X receptors, possibly the P2X7 subtype, inhibits FGF2-induced mitogenesis in astrocytes. Interactions between P2Y, P2X and polypeptide growth factor signaling pathways may have important implications for CNS development as well as injury and repair.  相似文献   

16.
High oxygen concentrations (hyperoxia), often required in the treatment of preterm infants and critically ill patients, cause lung injury, targeting especially the endothelium. Exposure of primary human lung microvascular endothelial cells (HLMVEC) to hyperoxia caused transient Akt activation after 60 min, as determined by Western blot analysis of phosphorylated Ser 473 of Akt. Akt phosphorylation was also increased after 24 h of hyperoxic exposure, which declined at 48 h. Adenoviral (Ad)-mediated expression of constitutively active myrAkt protected HLMVEC against hyperoxic injury. Cell death due to hyperoxia (95% O2, 8 days), which was primarily necrotic, was substantial in control and Ad-LacZ-transduced cells, but was diminished by almost half in myrAkt-transduced cells. Hyperoxia caused increased cellular glucose consumption, an effect that was amplified in cells transduced with myrAkt compared to the LacZ-transduced or the nontransduced controls. Increased glucose consumption in myrAkt-expressing cells was accompanied by increased phosphorylation of mTOR and p70 S6-kinase. Rapamycin treatment decreased glucose consumption in myrAkt-transduced cells to levels comparable to those in control and LacZ-transduced cells exposed to hyperoxia. Ultrastructural morphometric analyses demonstrated that mitochondria and endoplasmic reticulum were less swollen in myrAkt cells relative to controls exposed to hyperoxia. These studies demonstrate that early activation of Akt occurs in hyperoxia in HLMVEC. That this event is a beneficial response is suggested by the finding that constitutive activation of Akt protects against hyperoxic stress, at least in part, by maintaining mitochondrial integrity.  相似文献   

17.
Oxygen toxicity is one of the major risk factors in the development of the chronic lung disease or bronchopulmonary dysplasia in premature infants. Using proteomic analysis, we discovered that mitochondrial aldehyde dehydrogenase (mtALDH or ALDH2) was downregulated in neonatal rat lung after hyperoxic exposure. To study the role of mtALDH in hyperoxic lung injury, we overexpressed mtALDH in human lung epithelial cells (A549) and found that mtALDH significantly reduced hyperoxia-induced cell death. Compared with control cells (Neo-A549), the necrotic cell death in mtALDH-overexpressing cells (mtALDH-A549) decreased from 25.3 to 6.5%, 50.5 to 9.1%, and 52.4 to 15.1% after 24-, 48-, and 72-h hyperoxic exposure, respectively. The levels of intracellular and mitochondria-derived reactive oxygen species (ROS) in mtALDH-A549 cells after hyperoxic exposure were significantly lowered compared with Neo-A549 cells. mtALDH overexpression significantly stimulated extracellular signal-regulated kinase (ERK) phosphorylation under normoxic and hyperoxic conditions. Inhibition of ERK phosphorylation partially eliminated the protective effect of mtALDH in hyperoxia-induced cell death, suggesting ERK activation by mtALDH conferred cellular resistance to hyperoxia. mtALDH overexpression augmented Akt phosphorylation and maintained the total Akt level in mtALDH-A549 cells under normoxic and hyperoxic conditions. Inhibition of phosphatidylinositol 3-kinase (PI3K) activation by LY294002 in mtALDH-A549 cells significantly increased necrotic cell death after hyperoxic exposure, indicating that PI3K-Akt activation by mtALDH played an important role in cell survival after hyperoxia. Taken together, these data demonstrate that mtALDH overexpression attenuates hyperoxia-induced cell death in lung epithelial cells through reduction of ROS, activation of ERK/MAPK, and PI3K-Akt cell survival signaling pathways.  相似文献   

18.
Extracellular zinc promotes cell proliferation and its deficiency leads to impairment of this process, which is particularly important in epithelial cells. We have recently characterized a zinc-sensing receptor (ZnR) linking extracellular zinc to intracellular release of calcium. In the present study, we addressed the role of extracellular zinc, acting via the ZnR, in regulating the MAP kinase pathway and Na+/H+ exchange in colonocytes. We demonstrate that Ca2+ release, mediated by the ZnR, induces phosphorylation of ERK1/2, which is highly metal-specific, mediated by physiological concentrations of extracellular Zn2+ but not by Cd2+, Fe2+, Ni2+, or Mn2+. Desensitization of the ZnR by Zn2+, is followed by approximately 90% inhibition of the Zn2+ -dependent ERK1/2 phosphorylation, indicating that the ZnR is a principal link between extracellular Zn2+ and ERK1/2 activation. Application of both the IP3 pathway and PI 3-kinase antagonists largely inhibited Zn2+ -dependent ERK1/2 phosphorylation. The physiological significance of the Zn2+ -dependent activation of ERK1/2 was addressed by monitoring Na+/H+ exchanger activity in HT29 cells and in native colon epithelium. Preincubation of the cells with zinc was followed by robust activation of Na+/H+ exchange, which was eliminated by cariporide (0.5 microm); indicating that zinc enhances the activity of NHE1. Activation of NHE1 by zinc was totally blocked by the ERK1/2 inhibitor, U0126. Prolonged acidification, in contrast, stimulates NHE1 by a distinct pathway that is not affected by extracellular Zn2+ or inhibitors of the MAP kinase pathway. Desensitization of ZnR activity eliminates the Zn2+ -dependent, but not the prolonged acidification-dependent activation of NHE1, indicating that Zn2+ -dependent activation of H+ extrusion is specifically mediated by the ZnR. Our results support a role for extracellular zinc, acting through the ZnR, in regulating multiple signaling pathways that affect pH homeostasis in colonocytes. Furthermore activation of both, ERK and NHE1, by extracellular zinc may provide the mechanism linking zinc to enhanced cell proliferation.  相似文献   

19.
The effects of P2Y2 purinoceptor activation on c-Fos expression and the signaling pathways evoked by extracellular ATP/UTP in HeLa cells were investigated. We found that P2Y2 activation induced c-Fos protein and phosphorylated the extracellular signal-regulated kinases 1 and 2 (ERK1/2). The P2Y2-stimulated c-Fos induction was partly blocked (a) by U73122, a phospholipase C inhibitor, (b) by G?6976, a conventional PKC inhibitor, (c) by PD098059, a mitogen-activated protein kinase kinase inhibitor, and, moreover, (d) by the inhibitors of phosphoinositide 3-kinases (PI3K), LY294002 and wortmannin. When G?6976 and PD098059, or G?6976 and wortmannin, were combined there was a totally inhibition of P2Y2-induced c-Fos increase. Either U73122 or G?6976 did not inhibit ERK1/2 phosphorylation induced by ATP/UTP, while it was inhibited by LY294002 (or wortmannin) and by staurosporine. Additionally, wortmannin inhibited the cytosol-to-membrane translocation of PKC- epsilon induced by ATP/UTP. These data indicated that agonist-induced PI3K and downstream PKC- epsilon activation mediated the effect of ATP/UTP on ERK1/2 activation. To test the biological consequences of ERK1/2 activation, the effect of P2Y2 on cell functions were examined. P2Y2 stimulation increased cell proliferation and this effect was attenuated by PD098059 in a dose-dependent manner, thereby indicating that the ERK pathway mediates mitogenic signaling by P2Y2. In conclusion, the activation of conventional PKCs through P2Y2 receptor acts in concert with ERK and PI3K/PKC- epsilon pathways to induce c-Fos protein and HeLa cell proliferation.  相似文献   

20.
The secretion of parathyroid hormone (PTH) is suppressed in bovine parathyroid cells by raised extracellular [Ca2+], and 12-0-tetradecanoyl-phorbol-13-acetate (TPA) stimulates the release of PTH from cells suppressed by high extracellular [Ca2+]. Extracellular and cytosolic free [Ca2+] are proportionally related in intact cells. To assess the role of cytosolic free [Ca2+] on PTH secretion, bovine parathyroid cells were rendered permeable by brief exposure to an intense electric field. PTH secretion was comparable at 40 nM, 500 nM, 5 microM, 28 microM, 0.5 mM and 2 mM [Ca2+] (release of total cellular PTH 3.7 +/- 0.5%, 3.9 +/- 0.4%, 3.4% +/- 0.3%, 3.9 +/- 0.4%, 3.1 +/- 0.3%, 3.5 +/- 0.7%, respectively), but the secretion was stimulated twofold (P less than 0.05 vs. control) in a dose and ATP dependent manner with TPA (100 nM) and cyclic AMP (1 mM). As a result, free [Ca2+] in the range of those observed in intact cells during regulation of PTH secretion by changes of extracellular [Ca2+] did not affect the release of PTH in permeabilized cells. The [Ca2+] independent stimulation of PTH release by TPA and cyclic AMP indicates that changes of cytosolic free [Ca2+] may represent a secondary event not related to the regulation of PTH secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号