首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
An up-flow immobilized cell bioreactor was developed using a microbial consortium, consisting of Bacillus sp., Alcaligenes sp. and Aeromonas sp., immobilized on refractory brick pieces as immobilization support. malachite green, a model triphenylmethane dye was decolourized by more than 93% within 48 h (operating conditions: initial dye concentration 30 mg l−1; flow rate 6 ml h−1). The analytical studies based on TLC and 1H NMR showed degradation of the aromatic rings of the malachite green into simpler metabolic intermediates.  相似文献   

2.
Abstract

Biosorption technology has been acknowledged as one of the most successful treatment approaches for colored industrial effluents. The problems such as its high manufacturing cost and poor regeneration capability in the use of activated carbon as a biosorbent have prompted the environmental scientists to develop alternative biosorbent materials. In this context, as a sustainable green generation alternative biosorbent source, the discarded seed biomass from pepper (Capsicum annuum L.) processing industry was explored for the biotreatment of colored aqueous effluents in this study. To test the wastewater cleaning ability of biosorbent, Basic red 46 was selected as a typical model synthetic dye. Taguchi DoE methodology was employed to study the effect of important operational parameters, contact time, pH and synthetic dye concentration, on the biosorption process and to develop a mathematical model for the estimation of biosorption potential of biosorbent. The percentage contribution of each of these process variables on the dye biosorption was found to be 19.31%, 41.39%, and 38.74%, respectively. The biosorption capacity under the optimum environmental conditions, contact time of 360?min, pH of 8 and dye concentration of 30?mg L?1, was estimated to be 92.878?mg g?1 (R2: 99.45). This value was very close to the experimentally obtained dye removal performance value (92.095?mg g?1). These findings indicated the high ability of Taguchi DoE technique in the optimization and simulation of dye biosorption system. The kinetic and equilibrium modeling studies showed that the pseudo-second-order and Langmuir models were the best models for the elucidation of dye removal behavior of biosorbent. The thermodynamic studies displayed that the dye biosorption was a feasible, spontaneous and exothermic process. This parametric and phenomenological survey revealed that the discarded pepper seed biomass can be introduced as a potential and efficient biosorbent for the bioremediation of colored industrial effluents.  相似文献   

3.
In this study, a model synthetic azo dye (Basic red 46) bioremoval by Carpinus betulus sawdust as inexpensive, eco-friendly, and sustainable biosorbent from aqueous solution was examined in a batch biosorption system. The effective environmental parameters on the biosorption process, such as the value of pH, amount of biosorbent, initial dye concentration and contact time were optimized using classical test design. The possible dye-biosorbent interaction was determined by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The equilibrium, thermodynamic, and kinetic studies for the biosorption of Basic red 46 onto the sawdust biomass were performed. In addition, a single-stage batch dye biosorption system was also designed. The dye biosorption yield of biosorbent was significantly influenced by the change of operating variables. The experimental data were best described by the Freundlich isotherm model and both the pseudo-first-order kinetic and the pseudo-second-order kinetic models. Thermodynamic research indicated that the biosorption of dye was feasible and spontaneous. Based on the Langmuir isotherm model, the biosorbent was found to have a maximum biosorption potential higher than many other biosorbents in the literature (264.915?mg g?1). Thus, this investigation presents a novel green option for the assessment of waste sawdust biomass as a cheap and effective biosorbent material.  相似文献   

4.
The aim of this study was to adapt a reliable, reproducible and simple viability assay for cartilage and osteochondral studies. The previous assays (radioisotope uptake, assessment of matrix components, histological methods, oxygen consumption etc.) were complex, laborious, time consuming or suffer from difficulty of interpretation. MTT assay was chosen because it has been widely and successfully used in different cell and tissue studies, but has not been published on human solid articular cartilage. Fresh intact cartilage samples of human tali were tested to investigate the assay. The reliability of the MTT assay was also tested by an fluorescent dye combination. The MTT assay is based on the production of purple formazan pigment from methyltetrazolium salt by the mitochondrial enzymes of viable chondrocytes. The enzyme kinetics of the reaction was also investigated because it was unknown in the case of cartilage. The amount of pigment formed can be measured by spectrophotometry after extraction by methyl cellosolve. The color density is proportional to mitochondrial enzyme activity, reflecting the number of viable chondrocytes. The optimal reagent concentration, biopsy size, and incubation period were established. There is a linear relationship between the cartilage weight and the pigment production activity. A 9.8% nonspecific raction was observed in the negative controls. The enzyme kinetics of the reaction was also investigated. The MTT clevage up to 0.1% (w/v) follows the Michaelis kinetics. We calculated the Michaelis constant (2835 ± 130 μM), the maximal velocity (36 ± 3.2 × 10−5μMsec−1) and the velocity constant (1.27 ± 0.2 × 10−7sec−1) of the reaction. The latter is a significant marker for each tissue type. The viability of cartilage was also assessed and calculated by a fluorescent dye combination comprising 1 μg/ml propidium iodide (PI) and 4 μM/ml SYTO-16 stains. The PI stains dead cells (red fluorescence), the SYTO-16 stains live cells (green fluorescence). The staining can be visualised simultaneously, and the live/dead ratio can be calculated by image analysis software from saved image files. The MTT assay is a simple, non-expensive, efficient, reliable, reproducible, sensitive viability test for cartilage studies. The MTT reduction assay and the staining method were corrobative. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The nonspecific ability of anaerobic sludge bacteria obtained from cattle dung slurry was investigated for 17 different dyes in a batch assay system using sealed serum vials. Experiments using Reactive Violet 5 (RV 5) showed that sludge bacteria could effectively decolorize solutions having dye concentrations up to 1000 mg l−1 with a decolorization efficiency of above 75% during 48 h of incubation. Headspace gas composition of anaerobic batch systems for varying dye concentration revealed that lower concentrations of RV 5 (upto 500 mg l−1) were found to be stimulatory to the methanogenic activity of sludge bacteria. However at higher dye concentrations, the headspace gas composition was found to be similar to batch assay controls without dye, indicating that dye at higher concentrations was inhibitory to methanogenic bacteria of sludge. The optimum inoculum and incubation temperature for maximum decolorization of RV 5 was found to be 9.0 g l−1(in terms of total solids) and 37°C, respectively. Of sixteen other dyes tested, nine (Reactive Black 5, Reactive Blue 31, Reactive Blue 28, Reactive Red HE8B, Reactive Yellow, Reactive Golden Yellow, Mordant Orange, Novatic Olive R S/D & Navilan Yellow GL) were decolorized with more than 88% efficiency; three (Orange II, Navy Blue HER & Novatic Blue BC S/D) were decolorized with about 50–65% efficiency, whereas other three dyes (Procion Orange H2R, Procion Brilliant Blue HGR & Novatic Blue BC S/D) were decolorized with less than 40% efficiency. Though Ranocid Fast Blue was decolorized with about 92.5% efficiency, this was merely due to sorption, whereas the other dyes were decolorized due to biotransformation.  相似文献   

6.
Partial decolorization of two azo dyes (orange G and amaranth) and complete decolorization of two triphenylmethane dyes (bromophenol blue and malachite green) was achieved by cultures in submerged liquid culture producing laccase as the sole phenoloxidase. Enzyme production could be correlated with dye decolorization, with sorption of dye to mycelia accounting for less than 3% of dye removal.  相似文献   

7.
Trypan blue is colorant from the 19th century that has an association with Africa as a chemotherapeutic agent against protozoan (Trypanosomal) infections, which cause sleeping sickness. The dye still is used for staining biopsies, living cells and organisms, and it also has been used as a colorant for textiles.  相似文献   

8.
The effect of the transport of tricarboxylic acid cycle intermediates on the membrane potential of renal brush border vesicles was studied using fluorescence of the cyanine dye, 3,3′-dipropylthiadicarbocyanine iodide. The behavior of the dye in the preparation was established with valinomycin-induced K+-diffusion potentials; increases in fluorescence were associated with depolarizing conditions. Addition of 1 mM succinate or citrate to membrane/dye suspensions produced transient increases in fluorescence, indicative of a depolarizing event(s) associated with the transport of these substrates. The transient response in fluorescence was Na+ dependent, of greater magnitude under Na+-gradient as compared to Na+-equilibrium conditions, and was a saturable function of substrate concentration. The specificity of the fluorescence response was identical to that obtained from studies of the competitive inhibition of succinate transport by tricarboxylic acid cycle intermediates and analogs. We conclude that the major tricarboxylic acid cycle intermediates are transported via a common Na+-dependent transport system in renal brush border membranes.  相似文献   

9.
Laccases are multi copper oxidases that can oxidize both phenolic and nonphenolic lignin related compounds. Consequently, there has been continuous demand for laccases for the oxidative degradation of phenolic dyes in effluents. In view of this, the present work was focused on laccase production by solid substrate fermentation using a newly isolated fungus Perenniporia tephropora-L168. To intensify the laccase production, the process parameters pH, nitrogen, inducer, and substrate: water ratio were optimized by using statistical model. A set of optimal conditions noted were pH 3, nitrogen 0.001 g/L; inducer 0.5% and substrate: water ratio (1:10), which yielded laccase 1,160 U/g. The crude laccase exhibited noteworthy potential to degrade a triaryl-methane dye especially Malachite green. Also, during bioremediation studies, the statistical process optimization could achieve 81% decolourization within 180 min. The laccase treatment brought chemical transformation in malachite green as evident from UV–Visible spectra, FTIR, HPLC while toxicity against bacteria and fungi was also reduced. During phytotoxicity study, effect of treated and untreated dye on germination of seed was analyzed. Interestingly, the germination index for Vigna aconitifolia and Vigna radiata was increased by two and fourfold, respectively. Overall, this work demonstrates optimized production of laccase using Perenniporia tephropora-L168 and its efficient bioremediation potential for triaryl-methane dye.  相似文献   

10.
Raphael Meldola (1849–1915), English industrial and academic chemist, spectroscopist, naturalist, educator and lobbyist for science, is today almost a forgotten scientist whose life is celebrated only with a medal awarded by the Royal Society of Chemistry that honors achievement by younger chemists. In the 1870–80s, however, he invented a number of important synthetic dyestuffs including the cotton dyes isamine blue and Meldola's blue, and also naphthol green B, all of which have had application in biology and medicine. I describe here the early emergence of the synthetic dye industry, the first science-based industry, Meldola's role in its development, and his own inventions. Meldola's wide ranging achievements in science led to appointments as president of important professional scientific and manufacturers' societies. He was a fervent disciple of natural selection, a correspondent of Charles Darwin, and a prominent 19th-century neo-Darwinian. In 1886, drawing on analogies with evolutionary theory, he warned the British that neglect of science, particularly chemistry, would lead to industrial decline and even extinction, though his message generally was ignored, at least until 1914.  相似文献   

11.
Abstract

Methylene green is a versatile dye that can be used in a wide range of technical applications, most of which require the dye to be pure. Because commercial lots of methylene green are known to be heterogeneous, we report a thin layer chromatographic method for checking purity. We also describe a simple and effective flash chromatographic purification procedure for subsequent purification. The identity and purity of the dye can be checked easily using UV-visible absorption spectrum measurements or by more sophisticated procedures if necessary.  相似文献   

12.
Rhodamines were first produced in the late 19th century, when they constituted a new class of synthetic dyes. These compounds since have been used to color many things including cosmetics, inks, textiles, and in some countries, food products. Certain rhodamine dyes also have been used to stain biological specimens and currently are widely used as fluorescent probes for mitochondria in living cells. The early history and current biological applications are sketched briefly and an account of the ambiguities, complications and confusions concerning dye identification and nomenclature are discussed.  相似文献   

13.
Acid blue-15, a complex and resonance-stabilized triphenylmethane (TPM) textile dye, resistant to transformation, was decolorized/degraded in an up-flow immobilized cell bioreactor. A consortium comprised of isolates belonging to Bacillus sp., Alcaligenes sp. and Aeromonas sp. formed a multispecies biofilm on refractory brick pieces used as support material. The TPM dye was degraded to simple metabolic intermediates in the bioreactor with 94% decolorization at a flow rate of 4 ml h–1.  相似文献   

14.
The effect of the tumor promoters 12-O-tetradecanoylphorbol-13-acetate (TPA), mezerein, teleocidin, anthralin, the Ca2+-ionophore A23187, butylated hydroxytoluene (BHT), dichlordiphenyltrichloroethane (DDT) and phenobarbital (PB) on lucifer yellow transfer in cultures of SV-40-transformed Djungarian hamster fibroblasts was studied. TPA, mezerein, teleocidin, A23187, DDT and BHT exerted a strong inhibitory effect on cell-to-cell dye transfer. Anthralin uncoupled cells in 3 experiments out of 6. PB appeared to enhance lucifer yellow transfer. Sodium nitrite, a substance with unknown promoting activity, effectively uncoupled cells. All the promoters investigated had a reversible effect on the dye transfer. The value of the dye transfer method for promoter screening is discussed.Abbreviations BHT butylated hydroxytoluene - DDT dichlordiphenyltrichloroethane - LY Lucifer Yellow - PB phenobarbital - TPA 12-O-tetradecanoylphorbol-13-acetate  相似文献   

15.
Sylvia Lindberg 《Planta》1995,195(4):525-529
The tetra[acetoxymethyl] ester of the K+-binding fluorescent dye benzofuran isophthalate (PBFI-AM) was used to determine changes in intracellular potassium (K+) concentrations and to measure net transport of K+ in barley (Hordeum vulgare L. cv. Kara) root and leaf protoplasts. When this dye binds to free K+ inside the cytoplasm, the fluorescence intensity ratio 340/380 nm increases in direct relation to the K+ concentration. Because of a delay in the uptake of dye into the vacuoles, it is possible to determine K+ concentrations in the vacuoles and transport of K+ from the cytoplasm into the vacuole. The uptake of PBFI-AM in root and leaf protoplasts of barley differed in the absence or presence of external K+ and was faster at pH 5.5 than at pH 7.0. The fluorescence intensity of the dye was stable for at least 20 h when the protoplasts were kept at 4°C. In the presence of nigericin, the fluorescence intensity of both cells and protoplasts was linearly related to the external concentration of K+ (up to 100 mM).  相似文献   

16.
This work describes a unique and environmentally friendly approach for creating three-dimensional (3D) organic-inorganic flower shaped hybrid nanostructures called “nanoflower (NF)” by using Umbilicaria decussate (U. decussate) extract and copper ions (Cu2+). U. decussate species were collected from certain place in Antarctic and Turkey and extraction of each species were completed in methanol and water. The U. decussate extracts were used as organic components and Cu2+ acted as inorganic components for formation of U. decussate extracts based hybrid NFs. We rationally used these NFs as novel nanobiocatalyst and antimicrobial agents. These NFs exhibited peroxidase mimic, dye degradation and antimicrobial properties. The NFs were characterized with various techniques. For instance, the morphologies of the NFs were monitored by scanning electron microscope (SEM), presence of elements in the NFs were presented using Energy Dispersive X-Ray Analysis (EDX). Fourier-transform infrared spectroscopy (FT-IR) was used to elucidate corresponding bending and stretching of bonds in the NFs. The NFs acted as effective Fenton agents in the presence of hydrogen peroxide, and we demonstrated their peroxidase-like activity against guaiacol, dye degradation property towards malachite green and antimicrobial activity for Aeromonas hydrophila, Aeromonas sobria, Escherichia coli, Salmonella enterica and Staphylococcus aureus.  相似文献   

17.
The present study was conducted to evaluate the potential of aquatic vascular plant, Nasturtium officinale, for degradation of C.I. Acid Blue 92 (AB92). The effect of operational parameters such as initial dye concentration, plant biomass, pH, and temperature on the efficiency of biological decolorization process was determined. The reusability of the plant in long term repetitive operations confirmed the biological degradation process. The by-products formed during biodegradation process were identified by GC-MS technique. The effects of the dye on several plant physiological responses such as photosynthetic pigments content and antioxidant enzymes activity were investigated. The content of chlorophyll and carotenoids was significantly reduced at 20 mg/L of the dye. The activities of superoxide dismutase and peroxidase were remarkably increased in the plant root verifying their importance in plant tolerance to the dye contamination.  相似文献   

18.
Biodegradation of Methyl red by Galactomyces geotrichum MTCC 1360   总被引:1,自引:0,他引:1  
Galactomyces geotrichum MTCC 1360 can decolorize triphenylmethane, azo and reactive high exhaust textile dyes. At shaking condition this strain showed 100% decolorization of a toxic azo dye Methyl red (100 m gl−1) within 1 h in deionized water at 30 °C. The degradation of Methyl red was possible through a broad pH (3–12) and temperature (5–50 °C) range. Glucose and mycelium concentration had increased the decolorization rate, but the addition of 1 gl−1 molasses in deionized water made decolorization possible in only 10 min. Induction in the NADH–dichloro phenol indophenol (NADH–DCIP) reductase, Malachite green reductase, laccase and lignin peroxidase (Lip) activities were observed in the cells obtained after complete decolorization, showing that there is direct involvement in the degradation of Methyl red. The absence of N-N′-dimethyl-p-phenylenediamine (DMPD) in 5 °C, 2-aminobenzoic acid (ABA) in 50 °C and both the compounds in 30 °C sample have shown the differences in the metabolic fate of Methyl red at different temperatures. The untreated dye at 300 mg l−1 concentration showed 88% germination inhibition in Sorghum bicolor, whereas it was 72% in Triticum aestivum. There was no germination inhibition for both the plants by Methyl red metabolites at 300 mg l−1 concentration.

The scientific relevance of the paper

The azo dye Methyl red (100 mg l−1) was decolorized by G. geotrichum MTCC 1360 within 1 h at shaking condition in deionized water. This organism could decolorize Methyl red at wide pH and temperature ranges. Decolorization time was reduced to 10 min by the addition of molasses to deionized water. There was induction in laccase and Lip, NADH–DCIP reductase and Malachite green reductase activities. The metabolic fate of Methyl red changes with temperature which can be evidenced by the formation of 2-ABA at 5 °C, N-N′-DMPD at 50 °C and both the compounds were absent at 30 °C. Phytotoxicity showed that metabolites of dye had induced shoot and root length of both the tested plants.  相似文献   

19.
Decolorization of diazo dye Direct Red 81 by a novel bacterial consortium   总被引:1,自引:0,他引:1  
Summary Samples collected from various effluent-contaminated soils in the vicinities of dyestuff manufacturing units of Ahmedabad, India, were studied for screening and isolation of organisms capable of decolorizing textile dyes. A novel bacterial consortium was selected on the basis of rapid decolorization of Direct Red 81 (DR 81), which was used as model dye. The bacterial consortium exhibited 90% decolorization ability within 35 h. Maximum rate of decolorization was observed when starch (0.6 g l−1) and casein (0.9 g l−1) were supplemented in the medium. Decolorization of DR 81 was monitored by high performance thin layer chromatography, which indicated that dye decolorization was due to its degradation into unidentified intermediates. The optimum dye-decolorizing activity of the culture was observed at pH 7.0 and incubation temperature of 37 °C. Maximum dye-decolorizing efficiency was observed at 200 mg l−1 concentration of DR 81. The bacterial consortium had an ability to decolorize nine other structurally different azo dyes.  相似文献   

20.
徐圣东  周金洋  王丽  朱孟娟 《菌物学报》2021,40(6):1525-1537
利用漆酶(laccase)处理染料废水是近年来研究的热点。本研究以猴头菌Hericium erinaceus和金针菇Flammulina filiformis的发酵液为试验材料,通过硫酸铵沉淀、离子交换层析和超滤等方法,对发酵液中的漆酶进行了初步的分离纯化,然后分别研究了两种初提纯漆酶及其与小分子介体组成的漆酶介体系统(laccase-mediator system,LMS)对12种常用染料的降解效果。结果表明,猴头菌的初提纯漆酶对甲基红、铬黑T、孔雀绿和活性蓝R都具有很好的降解效果,反应24h后,降解率分别为79.6%、66.8%、80.3%和64.6%,且表现出时间依赖性,而对其他染料的降解效果不明显。当反应体系中加入介体2,2′-连氮基-双-(3-乙基苯并二氢噻唑啉-6-磺酸)二铵盐[2,2′-azinobis-(3-ethylbenzothiazoline-6-sulphate),ABTS]后,可增加猴头菌漆酶对考马斯亮蓝、结晶紫和孔雀绿的降解率,分别提高到33.7%、45.6%和94.2%。金针菇初提纯漆酶对孔雀绿、活性艳橙K-7R和活性红KD-8B都具有一定的降解效果,降解率分别为37.8%、39.9%和49%,也表现出了明显的时间依赖性。当反应体系中也加入ABTS后,金针菇漆酶对活性红KM-8B的降解率明显增加,由9.7%增加到58.2%。以上研究为猴头菌和金针菇漆酶在染料废水处理领域的应用提供了科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号