首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urotensin II is a neuropeptide first isolated from fish and later found in mammals: where it has potent cardiovascular, endocrine and behavioral effects. In rat brain the urotensin II receptor (UII-R) is predominately expressed in the cholinergic neurons of the pedunculopontine (PPTg) and laterodorsal tegmental nuclei. Typically, the function of the PPTg has been examined using excitotoxins, destroying both cholinergic and non-cholinergic neurons, which confounds interpretation. We took advantage of UII-R's unique expression profile, by combining UII with diphtheria toxin, to engineer a toxin specific for cholinergic neurons of the PPTg. In vitro, two different toxin constructs were shown to selectively activate UII-R (average EC50 approximately 30 nmol/L; calcium mobility assay) and to be 10,000-fold more toxic to UII-R expressing CHO cells, than wildtype cells (average LD50 approximately 2 nmol/L; cell viability). In vivo, pressure injection into the PPTg of rats, resulted in specific loss of choline transporter and NADPH diaphorase positive neurons known to express the UII-R. The lesions developed over time, resulting in the loss of over 80% of cholinergic neurons at 21 days, with little damage to surrounding neurons. This is the first highly selective molecular tool for the depletion of mesopontine cholinergic neurons. The toxin will help to functionally dissect the pedunculopontine and laterodorsal tegmental nuclei, and advance the understanding of the functions of these structures.  相似文献   

2.
We studied levels of tyrosine hydroxylase immunoreactivity and phosphorylation state in the ventral tegmental area (VTA) and nucleus accumbens (NAc) in an effort to understand better the mechanisms by which these brain reward regions are influenced by opiates and cocaine. In the VTA, chronic, but not acute, administration of either morphine or cocaine increased levels of tyrosine hydroxylase immunoreactivity by 30-40%, with no change observed in the relative phosphorylation state of the enzyme. In the NAc, chronic, but not acute, morphine and cocaine treatments decreased the phosphorylation state of tyrosine hydroxylase, without a change in its total amount. In contrast, morphine and cocaine did not regulate tyrosine hydroxylase in the substantia nigra or caudate/putamen, brain regions generally not implicated in drug reward. Morphine and cocaine regulation of tyrosine hydroxylase could represent part of a common biochemical basis of morphine and cocaine addiction and craving.  相似文献   

3.
G T Bain  C Kornetsky 《Life sciences》1987,40(11):1119-1125
Antagonism of the threshold lowering effect of cocaine for brain stimulation reward by naloxone was investigated. Rats with bipolar electrodes implanted in either the median forebrain bundle (MFB) or the ventral tegmental area (VTA) were trained on a rate-independent threshold procedure. Effective threshold lowering doses of cocaine (10-15 mg/kg i.p.) were determined for each subject. A moderate dose of naloxone (4 mg/kg i.p.) effectively blocked the threshold lowering action of the cocaine. Lower (2 mg/kg) and higher (8 mg/kg) doses of naloxone attenuated but did not completely block the cocaine effect. These results provide further evidence for a catecholamine/endogenous opioid interaction in central reward.  相似文献   

4.
Ghrelin, an orexigenic peptide, regulates energy balance specifically via hypothalamic circuits. Growing evidence suggest that ghrelin increases the incentive value of motivated behaviours via activation of the cholinergic-dopaminergic reward link. It encompasses the cholinergic afferent projection from the laterodorsal tegmental area (LDTg) to the dopaminergic cells of the ventral tegmental area (VTA) and the mesolimbic dopamine system projecting from the VTA to nucleus accumbens (N.Acc.). Ghrelin receptors (GHS-R1A) are expressed in these reward nodes and ghrelin administration into the LDTg increases accumbal dopamine, an effect involving nicotinic acetylcholine receptors in the VTA. The present series of experiments were undertaken directly to test this hypothesis. Here we show that ghrelin, administered peripherally or locally into the LDTg concomitantly increases ventral tegmental acetylcholine as well as accumbal dopamine release. A GHS-R1A antagonist blocks this synchronous neurotransmitter release induced by peripheral ghrelin. In addition, local perfusion of the unselective nicotinic antagonist mecamylamine into the VTA blocks the ability of ghrelin (administered into the LDTg) to increase N.Acc.-dopamine, but not VTA-acetylcholine. Collectively our data indicate that ghrelin activates the LDTg causing a release of acetylcholine in the VTA, which in turn activates local nicotinic acetylcholine receptors causing a release of accumbal dopamine. Given that a dysfunction in the cholinergic-dopaminergic reward system is involved in addictive behaviours, including compulsive overeating and alcohol use disorder, and that hyperghrelinemia is associated with such addictive behaviours, ghrelin-responsive circuits may serve as a novel pharmacological target for treatment of alcohol use disorder as well as binge eating.  相似文献   

5.
Our previous observations show that chronic opiate administration, including self-administration, decrease the soma size of dopamine (DA) neurons in the ventral tegmental area (VTA) of rodents and humans, a morphological change correlated with increased firing rate and reward tolerance. Given that a general hallmark of drugs of abuse is to increase activity of the mesolimbic DA circuit, we sought to determine whether additional drug classes produced a similar morphological change. Sections containing VTA were obtained from rats that self-administered cocaine or ethanol and from mice that consumed nicotine. In contrast to opiates, we found no change in VTA DA soma size induced by any of these other drugs. These data suggest that VTA morphological changes are induced in a drug-specific manner and reinforce recent findings that some changes in mesolimbic signaling and neuroplasticity are drug-class dependent.  相似文献   

6.
We describe here three different hamster cell mutants which are resistant to diphtheria toxin and which provide models for investigating some of the functions required by the toxin inactivates elongation factor 2 (EF-2). Cell-free extracts from mutants Dtx(r)-3 was codominant. The evidence suggests that the codominant phenotype is the result of a mutation in a gene coding for EF-2. The recessive phenotype might arise by alteration of an enzyme which modifies the structure of EF-2 so that it becomes a substrate for reaction with the toxin. Another mutant, Dtx(r)-2, contained EF-2 that was sensitive to the toxin and this phenotype was recessive. Pseudomonas aeruginosa exotoxin is known to inactivate EF-2 as does diphtheria toxin and we tested the mutants for cross-resistance to pseudomonas exotoxin. Dtx(r)-1 and Dtx(r)-3 were cross-resistant while Dtx(r)-2 was not. It is known that diphtheria toxin does not penetrate to the cytoplasm of mouse cells and that these cell have a naturally occurring phenotype of diphtheria toxin resistance. We fused each of the mutants with mouse 3T3 cells and measured the resistance. We fused each of the mutants with mouse 3T3 cells and measured the resistance of the hybrid cells to diphtheria toxin. Intraspecies hybrids containing the genome of mutants Dtx(r)-1 and Dtx(r)-3 had some resistance while those formed with Dtx(r)-2 were as sensitive as hybrids derived from fusions between wild-type hamster cells and mouse 3T3 cells.  相似文献   

7.
8.
Cocaine self-administration is associated with a propensity to relapse in humans and reinstatement of drug seeking in rats after prolonged withdrawal periods. These behaviors are hypothesized to be mediated by molecular neuroadaptations within the mesolimbic dopamine system. However, in most studies of drug-induced neuroadaptations, cocaine was experimenter-delivered and molecular measurements were performed after short withdrawal periods. In the present study, rats were trained to self-administer intravenous cocaine or oral sucrose (a control non-drug reward) for 10 days (6-h/day) and were killed following 1, 30, or 90 days of reward withdrawal. Tissues from the accumbens and ventral tegmental area (VTA) were assayed for candidate molecular neuroadaptations, including enzyme activities of cAMP-dependent protein kinase (PKA) and adenylate cyclase (AC), and protein expression of cyclin-dependent kinase 5 (cdk5), tyrosine hydroxylase (TH) and glutamate receptor subunits (GluR1, GluR2 and NMDAR1). In the accumbens of cocaine-trained rats, GluR1 and NMDAR1 levels were increased on days 1 and 90, while GluR2 levels were increased on days 1 and 30, but not day 90; PKA activity levels were increased on days 1 and 30, but not day 90, while AC activity, TH and cdk5 levels were unaltered. In the VTA of cocaine-trained rats, NMDAR1 levels were increased for up to 90 days, while GluR2 levels were increased only on day 1; TH and Cdk5 levels were increased only on day 1, while PKA and AC activity levels were unaltered. Cocaine self-administration produces long-lasting molecular neuroadaptations in the VTA and accumbens that may underlie cocaine relapse during periods of abstinence.  相似文献   

9.
Nicotine or cocaine, when administered intravenously, induces an increase of extracellular dopamine in the nucleus accumbens. The nicotine-mediated increase was shown to occur at least in part through increase of the activity of dopamine neurons in the ventral tegmental area. As part of our continuing studies of the mechanisms of nicotine effects in the brain, in particular, effects on reward and cognitive mechanisms, in the present study we examined the role of various receptors in the ventral tegmental area in nicotine and cocaine reward. We assayed inhibition of the increase of dopamine in the nucleus accumbens induced by intravenous nicotine or cocaine administration by antagonists administered into the ventral tegmental area. Nicotine-induced increase of accumbal dopamine release was inhibited by intrategmental nicotinic (mecamylamine), muscarinic (atropine), dopaminergic (D1: SCH 23390, D2: eticlopride), and NMDA glutamatergic (MK 801) and GABAB (saclofen) antagonists, but not by AMPA-kainate (CNQX, GYKI-52466) antagonists under our experimental circumstances. The intravenous cocaine-induced increase of dopamine in the nucleus accumbens was inhibited by muscarinic (atropine), dopamine 2 (eticlopride), and GABAB (saclofen) antagonists but not by antagonists to nicotinic (mecamylamine), dopamine D1 (SCH 23390), glutamate (MK 801), or AMPA-kainate (CNQX, GYKI-52466) receptors. Antagonists administered in the ventral tegmental area in the present study had somewhat different effects when they were previously administered intravenously. When administered intravenously atropine did not inhibit cocaine effects. The inhibition by atropine may be indirect, since this compound, when administered intrategmentally, decreased basal dopamine levels in the accumbens. The findings indicate that a number of receptors in the ventral tegmental area mediate nicotine-induced dopamine changes in the nucleus accumbens, a major component of the nicotine reward mechanism. Some, but not all, of these receptors in the ventral tegmental area also seem to participate in the reward mechanism of cocaine. The importance of local receptors in the ventral tegmental area was further indicated by the increase in accumbal dopamine levels after intrategmental administration of nicotine or also cocaine.  相似文献   

10.
Persistent drug-seeking behavior is hypothesized to co-opt the brain's natural reward-motivational system. Although ventral tegmental area (VTA) dopamine (DA) neurons represent a crucial component of this system, the synaptic adaptations underlying natural rewards and drug-related motivation have not been fully elucidated. Here, we show that self-administration of cocaine, but not passive cocaine infusions, produced a persistent potentiation of VTA excitatory synapses, which was still present after 3 months abstinence. Further, enhanced synaptic function in VTA was evident even after 3 weeks of extinction training. Food or sucrose self-administration induced only a transient potentiation of VTA glutamatergic signaling. Our data show that synaptic function in VTA DA neurons is readily but reversibly enhanced by natural reward-seeking behavior, while voluntary cocaine self-administration induced a persistent synaptic enhancement that is resistant to behavioral extinction. Such persistent synaptic potentiation in VTA DA neurons may represent a fundamental cellular phenomenon driving pathological drug-seeking behavior.  相似文献   

11.
Nothacker HP  Clark S 《The FEBS journal》2005,272(22):5694-5702
The discovery of novel biologically active peptides has led to an explosion in our understanding of the molecular mechanisms that underlie the regulation of sleep and wakefulness. Urotensin II (UII), a peptide originally isolated from fish and known for its strong cardiovascular effects in mammals, is another surprising candidate in the regulatory network of sleep. The UII receptor was found to be expressed by cholinergic neurons of laterodorsal and pedunculopontine tegmental nuclei, an area known to be of utmost importance for the on- and offset of rapid eye movement (REM) sleep. Recently, physiological data have provided further evidence that UII is indeed a modulator of REM sleep. The peptide directly excites cholinergic mesopontine neurons and increases the rate of REM sleep episodes. These new results and its emerging behavioral effects establish UII as a neurotransmitter/neuromodulator in mammals and should spark further interest into the neurobiological role of the peptide.  相似文献   

12.
High-affinity, β2-subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) are essential for nicotine reinforcement; however, these nAChRs are found on both gamma-aminobutyric acid (GABA) and dopaminergic (DA) neurons in the ventral tegmental area (VTA) and also on terminals of glutamatergic and cholinergic neurons projecting from the pedunculopontine tegmental area and the laterodorsal tegmental nucleus. Thus, systemic nicotine administration stimulates many different neuronal subtypes in various brain nuclei. To identify neurons in which nAChRs must be expressed to mediate effects of systemic nicotine, we investigated responses in mice with low-level, localized expression of β2* nAChRs in the midbrain/VTA. Nicotine-induced GABA and DA release were partially rescued in striatal synaptosomes from transgenic mice compared with tissue from β2 knockout mice. Nicotine-induced locomotor activation, but not place preference, was rescued in mice with low-level VTA expression, suggesting that low-level expression of β2* nAChRs in DA neurons is not sufficient to support nicotine reward. In contrast to control mice, transgenic mice with low-level β2* nAChR expression in the VTA showed no increase in overall levels of cyclic AMP response element-binding protein (CREB) but did show an increase in CREB phosphorylation in response to exposure to a nicotine-paired chamber. Thus, CREB activation in the absence of regulation of total CREB levels during place preference testing was not sufficient to support nicotine place preference in β2 trangenic mice. This suggests that partial activation of high-affinity nAChRs in VTA might block the rewarding effects of nicotine, providing a potential mechanism for the ability of nicotinic partial agonists to aid in smoking cessation.  相似文献   

13.
New perspectives on cocaine addiction: recent findings from animal research   总被引:1,自引:0,他引:1  
Research with laboratory animals has provided several insights into the nature of cocaine abuse and addiction. First, the nature of drug addiction has been reevaluated and the emphasis has shifted from physical dependence to compulsive drug-taking behavior. Second, animal studies suggest that cocaine is at least as addictive as heroin and possibly even more addictive. Third, cocaine is potentially more dangerous than heroin as evidenced by the higher fatality rate seen in laboratory animals given unlimited access to these drugs. Fourth, the neural basis of cocaine reinforcement has been identified and involves an enhancement of dopaminergic neurotransmission in the ventral tegmental dopamine system. Other addictive drugs (e.g., opiates) may also derive at least part of their reinforcing impact by pharmacologically activating this reward system. Fifth, although the biological consequences of repeated cocaine self-administration on central nervous system functioning are poorly understood, preliminary findings suggest that intravenous cocaine self-administration may decrease neural functioning in this brain reward system. This has important clinical implications because diminished functioning of an important brain reward system may significantly contribute to relapse into cocaine addiction. These and other findings from experimentation with laboratory animals suggest new considerations for the etiology and treatment of drug addiction.  相似文献   

14.
目的探索海洛因对中脑腹侧被盖区细胞Bax表达的影响。方法肌肉注射海洛因,建立成瘾大鼠模型,用免疫组化方法检测中脑腹侧被盖区细胞Bax的表达。结果连续给大鼠注射海洛因7d后,大鼠出现明显的戒断症状;中脑腹侧被盖区细胞Bax表达阳性细胞比对照组明显增多,与对照组相比差异有显著性(P〈0.01)。结论海洛因具有诱导Bax基因表达、损伤脑组织细胞的作用。  相似文献   

15.
The activity of ventral tegmental area (VTA) dopamine (DA) neurons promotes behavioral responses to rewards and environmental stimuli that predict them. VTA GABA inputs synapse directly onto DA neurons and may regulate DA neuronal activity to alter reward-related behaviors; however, the functional consequences of selective activation of VTA GABA neurons remains unknown. Here, we show that in?vivo optogenetic activation of VTA GABA neurons disrupts reward consummatory behavior but not conditioned anticipatory behavior in response to reward-predictive cues. In addition, direct activation of VTA GABA projections to the nucleus accumbens (NAc) resulted in detectable GABA release but did not alter reward consumption. Furthermore, optogenetic stimulation of VTA GABA neurons directly suppressed the activity and excitability of neighboring DA neurons as well as the release of DA in the NAc, suggesting that the dynamic interplay between VTA DA and GABA neurons can control the initiation and termination of reward-related behaviors.  相似文献   

16.
Yeomans J  Forster G  Blaha C 《Life sciences》2001,68(22-23):2449-2456
Mesopontine cholinergic neurons (Ch5 and Ch6 cell groups) activate the cerebral cortex via thalamic projections, and activate locomotion and reward via dopamine neurons in the substantia nigra and ventral tegmental area (VTA). Nicotinic receptors in VTA activate dopamine neurons quickly, and are needed for the stimulant and rewarding effects of nicotine in rats. Muscarinic receptors in VTA activate dopamine neurons slowly, and are needed for the rewarding effects of hypothalamic stimulation, but do not increase locomotion. Antisense oligonucleotides targetting M5 mRNA, when infused into the VTA, inhibited M5 receptor binding and rewarding hypothalamic stimulation. Mutant mice with truncated M5 muscarinic receptor genes drank more water than wild-type controls. Spontaneous locomotion and locomotor responses to amphetamine and scopolamine were unchanged. Electrical stimulation near Ch6 induced dopamine release in the nucleus accumbens in two phases, an early phase (0-2 min after stimulation) dependent on nicotinic and gluatamatergic receptors in VTA, and a late phase (8-50 min after stimulation) dependent on muscarinic receptors in VTA. The late phase was lost in M5 mutant mice, while the early phase was unchanged. M5 muscarinic receptors bind slowly to muscarinic ligands, and appear to mediate slow secretions.  相似文献   

17.
Dopamine (DA) neurons in the ventral tegmental area (VTA) not only participate in reward processing, but also respond to aversive stimuli. Although GABA neurons in this area are actively involved in regulating the firing of DA neurons, few data exist concerning the responses of these neurons to aversive sensory input. In this study, by employing extracellular single-unit recording and spectral analysis techniques in paralyzed and ventilated rats, we found that the firing pattern in 44% (47 of 106) of GABA cells in the VTA was sensitive to the sensory input produced by the ventilation, showing a significant ventilation-associated oscillation in the power spectra. Detailed studies revealed that most ventilation-sensitive GABA neurons (38 of 47) were excited by the stimuli, whereas most ventilation-sensitive DA neurons (11 of 14) were inhibited. When the animals were under anesthesia or the sensory pathways were transected, the ventilation-associated oscillation failed to appear. Systemic administration of non-competitive N-methyl-D-aspartase (NMDA) receptor antagonist MK-801 completely disrupted the association between the firing of GABA neurons and the ventilation. Interestingly, local MK-801 injection into the VTA dramatically enhanced the sensitivity of GABA neurons to the ventilation. Our data demonstrate that both GABA and DA neurons in the VTA can be significantly modulated by sensory input produced by the ventilation, which may indicate potential functional roles of VTA in processing sensation-related input.  相似文献   

18.
Abstract: The present study determined if repeated cocaine injections alter the effect of cocaine on extracellular glutamate in the ventral tegmental area (VTA). All rats were treated with daily cocaine (15 mg/kg i.p. × 2 days, 30 mg/kg i.p. × 5 days) or saline for 7 days. At 21 days after discontinuing the daily injections, a dialysis probe was placed into the VTA and the extracellular levels of glutamate were estimated. A systemic injection of cocaine (15 mg/kg i.p.) elevated extracellular glutamate in the VTA of rats pretreated with daily cocaine but not in the daily saline-pretreated subjects. No significant change in glutamate was produced by a saline injection in either pretreatment group. In a group of rats pretreated with daily cocaine, the D1 antagonist SCH-23390 (30 µ M ) was infused through the dialysis probe prior to the acute injections of saline and cocaine. SCH-23390 prevented the increase in extracellular glutamate associated with the acute administration of cocaine. Behavioral data were collected simultaneously with the measures of extracellular glutamate. The behavioral stimulant effect of cocaine was greater in cocaine-pretreated than saline-pretreated subjects, and the behavioral augmentation in cocaine-pretreated rats was partly blocked by SCH-23390. These data support the hypotheses that repeated cocaine administration produces an increase in the capacity of D1 receptor stimulation to release glutamate in the VTA and that this mechanism partly mediates behavioral sensitization produced in rats treated with daily cocaine injections.  相似文献   

19.
20.
Tzschentke TM 《Amino acids》2000,19(1):211-219
Summary. This review will briefly summarize experimental evidence for an involvement of the medial prefrontal cortex (mPFC) in reward-related mechanisms in the rat brain. The mPFC is part of the mesocorticolimbic dopaminergic system. It receives prominent dopaminergic input from the ventral tegmental area (VTA) and, via the mediodorsal thalamus, inputs from other subcortical basal ganglia structures. In turn it projects back to the VTA and the nucleus accumbens septi (NAS), which are generally considered as main components of the brain reward system. Evidence for the involvement of the mPFC in reward-related mechanisms comes mainly from three types of studies, conditioned place preference (CPP), intracranial self-stimulation (ICSS), and self-administration. Work will be summarized that has shown that certain drugs injected into the mPFC can produce CPP or that lesions of the mPFC can disrupt the development of CPP, that ICSS is obtained with the stimulating electrode placed in the mPFC, and that certain drugs are self-administered into the mPFC or that lesions of the mPFC disrupt the peripheral self-administration of certain drugs. However, it has also been shown that the role of the mPFC in reward is not uniform. For example, the mPFC appears to be particularly important for the rewarding actions of cocaine, while it appears not to be important for the rewarding actions of amphetamine. Also, different subareas of the mPFC appear to be differentially involved in the rewarding actions of different drugs. Taken together, the available evidence shows that some drugs can produce reward directly within the mPFC, and that some drugs, even though not having direct rewarding effects within the mPFC, depend on the function of the mPFC for the mediation of their rewarding effects. Received August 31, 1999 Accepted September 20, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号