首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hamster oocytes were loaded with the DNA dyes Hoechst 33342 or propidium iodide. Oocytes incubated in 10 mumol Hoechst 333421(-1) showed intracellular fluorescence within 10-20 s of exposure, as did hamster and guinea-pig spermatozoa. Impaled oocytes to which acrosome-intact hamster spermatozoa were bound before injection of Hoechst 33342 showed dye transfer to adhering spermatozoa within 2 min of injection. Oocytes loaded passively with Hoechst 33342 showed dye transfer to bound, acrosome-intact hamster spermatozoa within 10 min. On ultra-structural examination, no bound, acrosome-intact hamster spermatozoa (n = 311) were found to be fused. By contrast, oocytes incubated with 10 mumol propidium iodide l-1 showed no intracellular fluorescence after 2 h, although in approximately 50% of oocytes, fluorescence developed rapidly in the first polar body. Oocytes injected with propidium iodide showed intracellular fluorescence but no dye transfer to bound, acrosome-intact hamster spermatozoa. Oocytes impaled on pipettes containing propidium iodide showed no dye transfer to unlabelled oocytes with which they were brought into contact, whereas in similar experiments using Hoechst 33342 detectable dye transfer to an adjacent oocyte occurred within 10 min. Oocytes loaded with propidium iodide transferred propidium iodide to fusion-competent guinea-pig spermatozoa during in vitro fertilization. Normally, between 20 and 40 spermatozoa bound per oocyte, and the percentage of spermatozoa showing dye transfer varied between 0 and 41%. Dye transfer occurred within 5-45 min. Only those nuclei that showed propidium iodide transfer subsequently decondensed, suggesting that dye transfer is correlated with fusion. The presence of fused spermatozoa was confirmed by ultrastructural examination of oocytes. In separate experiments, hamster and guinea-pig spermatozoa showed detectable fluorescence from propidium iodide within 20 s of osmotic rupture or membrane stripping by detergent, suggesting the lag in dye transfer to sperm nuclei during fertilization reflects a delay in sperm-oocyte fusion following adhesion. This evidence suggests that Hoechst 33342 could be an unreliable marker for sperm-oocyte fusion in fertilization because of its capacity for passive movement from oocyte to spermatozoon. This problem can be overcome using oocytes injected with propidium iodide. With this technique, it was possible to show that fusion-competent guinea-pig spermatozoa that are held in pipettes will fuse with hamster oocytes when placed mechanically against the oocyte surface.  相似文献   

2.
The interactions and binding characteristics of DNA dyes used in the flow cytometric analysis of chromatin were studied using human chromosomes and mouse thymocyte nuclei. The kinetics of dye binding and the relationship between fluorescence intensity and dye concentration are presented. Under the conditions used, Hoechst 33258, propidium iodide and chromomycin A3 reach an equilibrium with thymocyte nuclei after approximately 5 min, 20 min and more than 1 h, respectively. The same binding kinetics are observed with Hoechst 33258 and chromomycin when nuclei are stained with a mixture of the two dyes. Sodium citrate, which improves the resolution of flow karyotypes, causes a rapid increase in Hoechst and propidium iodide fluorescence, but a decrease in the fluorescence of chromomycin. The relative peak positions of chromosomes in a flow karyotype are unaffected by sodium citrate addition. The spectral interaction between Hoechst and chromomycin is quantified. There is variation among the human chromosome types in the amount of energy transferred from Hoechst to chromomycin. By measuring the Hoechst and chromomycin fluorescence of each chromosome after Hoechst excitation, it is shown that the amount of energy transferred is correlated to the ratio of the amount of Hoechst to chromomycin bound. Although the energy transfer between the two dyes is considerable, this has little effect on the reproducibility of flow karyotype measurements. The relative peak positions of all human chromosomes in a 64 X 64 channel flow karyotype, except for the 13 and Y chromosomes, vary in the order of 0.5 channel over a 16-fold change in either Hoechst or chromomycin concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Summary The interactions and binding characteristics of DNA dyes used in the flow cytometric analysis of chromatin were studied using human chromosomes and mouse thymocyte nuclei. The kinetics of dye binding and the relationship between fluorescence intensity and dye concentration are presented. Under the conditions used, Hoechst 33258, propidium iodide and chromomycin A3 reach an equilibrium with thymocyte nuclei after approximately 5 min, 20 min and more than 1 h, respectively. The same binding kinetics are observed with Hoechst 33258 and chromomycin when nuclei are stained with a mixture of the two dyes. Sodium citrate, which improves the resolution of flow karyotypes, causes a rapid increase in Hoechst and propidium iodide fluorescence, but a decrease in the fluorescence of chromomycin. The relative peak positions of chromosomes in a flow karyotype are unaffected by sodium citrate addition. The spectral interaction between Hoechst and chromomycin is quantified. There is variation among the human chromosome types in the amount of energy transferred from Hoechst to chromomycin. By measuring the Hoechst and chromomycin fluorescence of each chromosome after Hoechst excitation, it is shown that the amount of energy transferred is correlated to the ratio of the amount of Hoechst to chromomycin bound. Although the energy transfer between the two dyes is considerable, this has little effect on the reproducibility of flow karyotype measurements. The relative peak positions of all human chromosomes in a 64×64 channel flow karyotype, except for the 13 and Y chromosomes, vary in the order of 0.5 channel over a 16-fold change in either Hoechst or chromomycin concentration. This implies that, with the present flow cytometers, variation in staining conditions will have minimal effects on the reproducibility of the relative peak positions in flow karyotypes.In honour of Prof. P. van Duijn  相似文献   

4.
Summary A dual laser beam excitation device for flow analysis of biological particles has been developed. The aid of this arrangement is to increase the range of fluorescent agents employed so far in quantitative and qualitative cytochemistry. Combining an argon ion and a helium-cadmium laser two color fluorescence measurements were performed employing propidium iodide as a DNA stain and fluorescamine which stains total protein in fixed cells. Energy transfer processes between the antibiotic and DNA specific dye mithramycin and propidium iodide both being bound to nuclear chromatin were analyzed. Utilization of energy transfer processes is generally discussed as a mean to extract information about the structure and conformation of nuclear chromatin in situ. The application of a crypton ion laser with three lines near 400 nm and a single line at 350 nm having a light output in each range of nearly one Watt gives the opportunity of utilizing DNA fluorochromes which have an excitation maximum in the deep blue region. DNA spectra are shown employing mithramycin, the benzimidazol derivative 33258 (Hoechst) and the indol compound DAPI which has a high DNA specifity combined with a great stability under UV illumination. By separating two focussed laser beams at their intereecting points with the liquid sample stream the trajectory of each flowing cell crosses the beams sequentially, which causes a solitary dual excitation of each cell. The advantages of a solitary excitation device compared with a simultaneous one is discussed.This work has been supported by the ministry of research and technology (FRG), contract No. 01VH015-B13MT 225a  相似文献   

5.
BACKGROUND: Live cell fluorescence microscopy experiments often require visualization of the nucleus and the chromatin to determine the nuclear morphology or the localization of nuclear compartments. METHODS: We compared five different DNA dyes, TOPRO-3, TOTO-3, propidium iodide, Hoechst 33258, and DRAQ5, to test their usefulness in live cell experiments with continuous imaging and photobleaching in widefield epifluorescence and confocal laser scanning microscopy. In addition, we compared the DNA stainings with fluorescent histones as an independent fluorescent label to mark chromatin. RESULTS: From the dyes tested, only Hoechst and DRAQ5 could be used to stain DNA in living cells. However, DRAQ5 had several advantages, namely low photobleaching, labeling of the chromatin compartments comparable to that of H2B-GFP fusion proteins, and deep red excitation/emission compatible with available genetically encoded fluorescent proteins such as C/G/YFP or mRFP. CONCLUSIONS: The DNA dye DRAQ5 is well suited for chromatin visualization in living cells and can easily be combined with other fluorophores with blue to orange emission.  相似文献   

6.
The fluorescent dye 4′-6-Diamidino-2-phenylindole (DAPI) is frequently used in fluorescence microscopy as a chromosome and nuclear stain because of its high specificity for DNA. Normally, DAPI bound to DNA is maximally excited by ultraviolet (UV) light at 358 nm, and emits maximally in the blue range, at 461 nm. Hoechst dyes 33258 and 33342 have similar excitation and emission spectra and are also used to stain nuclei and chromosomes. It has been reported that exposure to UV can convert DAPI and Hoechst dyes to forms that are excited by blue light and emit green fluorescence, potentially confusing the interpretation of experiments that use more than one fluorochrome. The work reported here shows that these dyes can also be converted to forms that are excited by green light and emit red fluorescence. This was observed both in whole tissues and in mitotic chromosome spreads, and could be seen with less than 10-s exposure to UV. In most cases, the red form of fluorescence was more intense than the green form. Therefore, appropriate care should be exercised when examining tissues, capturing images, or interpreting images in experiments that use these dyes in combination with other fluorochromes.  相似文献   

7.
Abstract The detection of regions of heterochromatin has been the subject of intense investigation. We investigated an adaptation of the commonly used technique by replacing the nonfluorescent dye, Giemsa, by a fluorescent one, propidium iodide. This adaptation produces greater contrast of the heterochromatic bands in metaphase chromosomes and can be especially valuable when the organisms studied possess heterochromatin that is pale and difficult to visualize. We discuss the interactions of these two dyes with DNA and the excitation of the fluorescent dye when irradiated with ultraviolet light.  相似文献   

8.
We report on wide‐field time‐correlated single photon counting (TCSPC)‐based fluorescence lifetime imaging microscopy (FLIM) with lightsheet illumination. A pulsed diode laser is used for excitation, and a crossed delay line anode image intensifier, effectively a single‐photon sensitive camera, is used to record the position and arrival time of the photons with picosecond time resolution, combining low illumination intensity of microwatts with wide‐field data collection. We pair this detector with the lightsheet illumination technique, and apply it to 3D FLIM imaging of dye gradients in human cancer cell spheroids, and C. elegans.  相似文献   

9.
Abstract

The detection of regions of heterochromatin has been the subject of intense investigation. We investigated an adaptation of the commonly used technique by replacing the nonfluorescent dye, Giemsa, by a fluorescent one, propidium iodide. This adaptation produces greater contrast of the heterochromatic bands in metaphase chromosomes and can be especially valuable when the organisms studied possess heterochromatin that is pale and difficult to visualize. We discuss the interactions of these two dyes with DNA and the excitation of the fluorescent dye when irradiated with ultraviolet light.  相似文献   

10.
Application of the fluorescent DNA-intercalator propidium iodide for stabilization of the mitotic chromosome structure during isolation of chromosomes from V79 Chinese hamster cells and subsequent staining with the fluorochromes 33258 Hoechst or DAPI allowed bivariate flow karyotyping of isolated chromosomes. Fluorescence of 33258 Hoechst bound to isolated chromosomes containing 5-bromodeoxyuridine (BrdUrd) was quenched in comparison with the fluorescence of control chromosomes. Despite structural relationship and similarity of both absorption and fluorescence spectra of DAPI and 33258 Hoechst, reduction of fluorescence of DAPI-stained isolated chromosomes was not observed, by contrast with findings in conventional cytological metaphase preparations. It could be obtained, however, by preirradiation of the chromosomes with near-UV in the presence of DAPI. This led to a progressive destruction of the chromosomes. Destruction also occurred without BrdUrd, though at a slower rate. Preirradiation of chromosomes in the presence of 33258 Hoechst hardly affected the integrity of the chromosomes. Preirradiation of a 33258 Hoechst solution and its subsequent use as a stain resulted in a considerably decreased fluorescence of chromosomes. For DAPI this effect was small. Thus, whereas 33258 Hoechst itself is much more sensitive to near-UV irradiation than DAPI, DAPI bound to DNA in chromosomes renders the DNA much more sensitive to irradiation than 33258 Hoechst bound to DNA. Presumably, these differences can at least partly be reduced to the different molecular sizes of the dyes.  相似文献   

11.
Summary Application of the fluorescent DNA-intercalator propidium iodide for stabilization of the mitotic chromosome structure during isolation of chromosomes from V79 Chinese hamster cells and subsequent staining with the fluorochromes 33258 Hoechst or DAPI allowed bivariate flow karyotyping of isolated chromosomes. Fluorescence of 33258 Hoechst bound to isolated chromosomes containing 5-bromodeoxyuridine (BrdUrd) was quenched in comparison with the fluorescence of control chromosomes. Despite structural relationship and similarity of both absorption and fluorescence spectra of DAPI and 33258 Hoechst, reduction of fluorescence of DAPI-stained isolated chromosomes was not observed, by contrast with findings in conventional cytological metaphase preparations. It could be obtained, however, by preirradiation of the chromosomes with near-UV in the presence of DAPI. This led to a progressive destruction of the chromosomes. Destruction also occurred without BrdUrd, though at a slower rate. Preirradiation of chromosomes in the presence of 33258 Hoechst hardly affected the integrity of the chromosomes. Preirradiation of a 33258 Hoechst solution and its subsequent use as a stain resulted in a considerably decreased fluorescence of chromosomes. For DAPI this effect was small. Thus, whereas 33258 Hoechst itself is much more sensitive to near-U.V irradiation than DAPI, DAPI bound to DNA in chromosomes renders the DNA much more sensitive to irradiation than 33258 Hoechst bound to DNA. Presumably, these differences can at least partly be reduced to the different molecular sizes of the dyes.In honour of Prof. P. van Duijn  相似文献   

12.
We have studied the fluorescence emission by two-photon excitation of four dyes widely used for bioimaging studies, rhodamine 6G, fluorescein, pyrene and indo-1 at the single molecule level. The single dye molecules, spread on a glass substrate by spin coating, show a constant fluorescence output until a sudden transition to a dark state very close to the background. The bleaching time that is found to vary in the series pyrene, indo-1, fluorescein and rhodamine 6G from the fastest to the slowest one respectively, has a Gaussian distribution indicating that the observed behavior is not due to photobleaching. Moreover, the bleaching time decreases with the glass substrate temperature reaching a vanishing nonmeasurable value for a limiting temperature whose value is found in the same series as for the bleaching time, from the lowest to the highest temperature respectively. The observed bleaching shows a clear correlation to the amount of absorbed power not reirradiated as fluorescence and to the complexity of the molecule. These observations are interpreted as thermal bleaching where the temperature increase is induced by the two-photon absorption of the single dyes as confirmed also by numerical simulations.  相似文献   

13.
In laser based flow cytometers, UV excitation of Hoechst 33258 and propidium iodide (PI) or ethidium bromide (EB) is performed with 351/364 nm high power lines of UV-capable argon ion lasers, which are expensive and short-lived. In this paper we note for the first time that helium-cadmium lasers emitting 10 to 30 mW at 325 nm are even more superior for cell kinetic bivariate bromodeoxyuridine (BrdUrd)/Hoechst PI or EB cell cycle analysis. HeCd single laser UV excitation gives comparable CVs for cell cycle distributions, and almost normal G2M/G1 ratios of 1.9 to 2.0 for all cell cycles. This is shown for synchronous and asynchronous cell populations on a FACStar+ and an Ortho Cytofluorograf. Therefore we recommend helium-cadmium lasers as low-power, cheap, and long-lived UV excitation sources for the cytochemically simple but high resolution multiparameter BrdUrd-Hoechst cell kinetic analysis.  相似文献   

14.
We developed a rapid technique for preservation of Hoechst 33342/propidium iodide-stained cells, using ethanol as a fixative. Combined staining with these dyes makes possible analysis of cell-cycle phase-specific cell death. The technique relies on exclusion of propidium iodide from the viable cells, whereas Hoechst stains all of the cells. The bivariate histograms resulting from the flow cytometric analysis contain the equivalent of two single-parameter DNA histograms, one of the living and the other of the dead cell population. Preservation of staining involved addition of 25% ethanol in PBS after propidium iodide staining and before Hoechst staining. The separation between the living and the dead cell populations was maintained for over 3 days at 4 degrees C. This technique will be valuable for quantitative evaluation of the cell-cycle phase-specific effects of cytostatic or cytotoxic agents, particularly in situations where a lag period between staining and analysis is unavoidable.  相似文献   

15.
The aim of this study was to evaluate whether or not the differences in chromatin structure between diploid stromal cells or lymphocytes, which are often used as DNA ploidy standard, and aneuploid breast tumor cells can significantly affect the estimates of the DNA index of these tumors. To this end, the DNA content estimates of 34 aneuploid breast tumors, differing in size, degree of differentiation, and presence or absence of estrogen and progesterone receptors and metastases, were compared using four common DNA fluorochromes: DAPI, Hoechst 33342, propidium iodide, and acridine orange. These dyes differ in their mode of interaction with DNA (binding to minor groove or intercalation) and for each of them binding to DNA is restricted to a different degree by nuclear proteins. It was expected, therefore, that if differences in chromatin structure play a role in DNA content estimates, the DNA index of the measured tumors may vary depending on the dye. The cell nuclei were isolated from the tumors using a detergent-based procedure and stained with each of the dyes and the DNA index was estimated using peripheral blood lymphocytes as a DNA content standard. For each of the tumors, the DNA index estimates with all four dyes correlated very well. When the results obtained with individual dyes were compared in pairs, the correlation coefficients (r) of DNA indices were all above 0.96 (correlation at p less than 0.001). The best concordance was seen between specimens stained with Hoechst 33342 and DAPI (r = 0.99), and the least between those stained with Hoechst 33342 and propidium iodide (r = 0.96). The data indicate that DNA content analysis of unfixed nuclei, utilizing the above fluorochromes, is not significantly biased by differences in chromatin structure of the measured cells.  相似文献   

16.
The preferred dye binding sites and the microenvironment of known nucleotide sequences within mitochondrial and plasmid pBR322 DNA was probed in a gross fashion with restriction endonucleases. The intercalating dyes, ethidium bromide and propidium iodide, do not inhibit a given restriction endonuclease equally at all of the restriction sites within a DNA molecule. The selective inhibition may be explained, in part, by the potential B to Z conformation transition of DNA flanking the restriction site and by preferred dye binding sites. Propidium iodide was found to be a more potent inhibitor than ethidium bromide and the inhibition is independent of the type of cut made by the enzyme.  相似文献   

17.
We report on the investigation of the structure of DNA liquid crystal (LC) phases by means of polarization sensitive two-photon microscopy (PSTPM). DNA was stained with fluorescent dyes, an intercalator propidium iodide, or a groove binder Hoechst 3342, and the angular dependence of the intensity of two-photon excited fluorescence emitted by the dye was collected. The local orientation of DNA molecules in cholesteric and columnar LC phases was established on the basis of the relative angle between the transition dipole of the dye and the long axis of DNA helix. Three-dimensional images of the cholesteric phase were obtained making use of the intrinsic 3D resolving ability of two-photon microscopy. We also discuss the influence of dyes on the parameters of DNA LC phases and comment on advantages and limitations of the PSTPM technique in comparison with other LC characterization techniques.  相似文献   

18.
Two-photon fluorescence excitation has been found to be a very powerful method for enhancing the sensitivity and resolution in far-field light microscopy. Two-photon fluorescence excitation also provides a substantially background-free detection on the single-molecule level. It allows direct monitoring of formation of labelled biomolecule complexes in solution. Two-photon excitation is created when, by focusing an intensive light source, the density of photons per unit volume and per unit time becomes high enough for two photons to be absorbed into the same chromophore. In this case, the absorbed energy is the sum of the energies of the two photons. In two-photon excitation, dye molecules are excited only when both photons are absorbed simultaneously. The probability of absorption of two photons is equal to the product of probability distributions of absorption of the single photons. The emission of two photons is thus a quadratic process with respect to illumination intensity. Thus in two-photon excitation, only the fluorescence that is formed in the clearly restricted three-dimensional vicinity of the focal point is excited. We have developed an assay concept that is able to distinguish optically between the signal emitted from a microparticle in the focal point of the laser beam, and the signal emitted from the surrounding free labelled reagent. Moreover, the free labels outside the focal volume do not contribute any significant signal. This means that the assay is separation-free. The method based on two-photon fluorescence excitation makes possible fast single-step and separation-free immunoassays, for example, for whole blood samples. Since the method allows a separation-free assay in very small volumes, the method is very useful for high-throughput screening assays. Consequently we believe that two-photon fluorescence excitation will make a remarkable impact as a research tool and a routine method in many fields of analysis.  相似文献   

19.
Optical differences between a mercury arc lamp and a laser-illuminated flow cytometer are compared. The distributions of spectral intensities of the two light sources are shown in relation to the excitation characteristics of the fluorescent dyes acriflavine, chromomycin A3, mithramycin, ethidium bromide, Hoechst 33258, and 4,6-diamidino-2-phenylindole (DAPI). Fluorescence intensities of microspheres and Hoechst 33258-stained mouse sperm are compared in the two cytometers. The optical efficiencies are similar and depend on the match of the excitation characteristics of the stain with the emission spectra of the light source.  相似文献   

20.
Accessibility of mouse testicular and vas deferens (vas) sperm cell DNA to acridine orange, propidium iodide, ellipticine, Hoechst 33342, mithramycin, chromomycin A3, 4'6-diamidino-2-phenylindole (DAPI), and 7-amino-actinomycin D (7-amino-AMD) was determined by flow cytometry. Permeabilized cells were either stained directly or after pretreatment with 0.06 N HCl. For histone-containing tetraploid, diploid, and round spermatid cells, HCl extraction of nuclear proteins caused an approximately sixfold increase of 7-amino-AMD stainability but had no significant effect on DAPI stainability. For these same cell types, the stainability with other intercalating (acridine orange, propidium iodide, ellipticine) and externally binding (Hoechst 33342, mithramycin, chromomycin A3) dyes was increased by 1.6- to 4.0-fold after HCl treatment. In sharp contrast, HCl treatment of vas sperm did not increase the staining level of 7-amino-AMD, DAPI, or propidium iodide but did increase the staining level for the other intercalating dyes (1.3- to 1.5-fold) and external dyes (1.3- to 1.9-fold). Elongated spermatids that contain a mixture of protein types including histones, transition proteins, and protamines demonstrated the greatest variability of staining with respect to type of stain and effect of acid extraction of proteins. In general, for nearly all dyes, the round spermatids had an increased level and tetraploid cells had a decreased level of stainability relative to the same unit DNA content of diploid cells. The observed differential staining is discussed in the context of chromatin alterations related to the unique events of meiosis and protein displacement and replacement during sperm differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号